Suppr超能文献

基于静息态功能磁共振成像动态最小生成树中的多层模块度对双相情感障碍进行分类。

Classification of bipolar disorders using the multilayer modularity in dynamic minimum spanning tree from resting state fMRI.

作者信息

Wang Huan, Zhu Rongxin, Tian Shui, Shao Junneng, Dai Zhongpeng, Xue Li, Sun Yurong, Chen Zhilu, Yao Zhijian, Lu Qing

机构信息

School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China.

Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China.

出版信息

Cogn Neurodyn. 2023 Dec;17(6):1609-1619. doi: 10.1007/s11571-022-09907-x. Epub 2022 Dec 3.

Abstract

UNLABELLED

The diagnosis of bipolar disorders (BD) mainly depends on the clinical history and behavior observation, while only using clinical tools often limits the diagnosis accuracy. The study aimed to create a novel BD diagnosis framework using multilayer modularity in the dynamic minimum spanning tree (MST). We collected 45 un-medicated BD patients and 47 healthy controls (HC). The sliding window approach was utilized to construct dynamic MST via resting-state functional magnetic resonance imaging (fMRI) data. Firstly, we used three null models to explore the effectiveness of multilayer modularity in dynamic MST. Furthermore, the module allegiance exacted from dynamic MST was applied to train a classifier to discriminate BD patients. Finally, we explored the influence of the FC estimator and MST scale on the performance of the model. The findings indicated that multilayer modularity in the dynamic MST was not a random process in the human brain. And the model achieved an accuracy of 83.70% for identifying BD patients. In addition, we found the default mode network, subcortical network (SubC), and attention network played a key role in the classification. These findings suggested that the multilayer modularity in dynamic MST could highlight the difference between HC and BD patients, which opened up a new diagnostic tool for BD patients.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-022-09907-x.

摘要

未标注

双相情感障碍(BD)的诊断主要依赖于临床病史和行为观察,而仅使用临床工具往往会限制诊断准确性。本研究旨在利用动态最小生成树(MST)中的多层模块化创建一种新型的BD诊断框架。我们收集了45名未用药的BD患者和47名健康对照(HC)。采用滑动窗口方法通过静息态功能磁共振成像(fMRI)数据构建动态MST。首先,我们使用三种空模型来探索动态MST中多层模块化的有效性。此外,将从动态MST中提取的模块忠诚度应用于训练分类器以区分BD患者。最后,我们探讨了功能连接(FC)估计器和MST尺度对模型性能的影响。研究结果表明,动态MST中的多层模块化在人类大脑中不是一个随机过程。该模型识别BD患者的准确率达到83.70%。此外,我们发现默认模式网络、皮层下网络(SubC)和注意力网络在分类中起关键作用。这些发现表明,动态MST中的多层模块化可以突出HC和BD患者之间的差异,为BD患者开辟了一种新的诊断工具。

补充信息

在线版本包含可在10.1007/s11571-022-09907-x获取的补充材料。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验