Suppr超能文献

当无答案优于错误答案时:批次效应的因果视角

When no answer is better than a wrong answer: A causal perspective on batch effects.

作者信息

Bridgeford Eric W, Powell Michael, Kiar Gregory, Noble Stephanie, Chung Jaewon, Panda Sambit, Lawrence Ross, Xu Ting, Milham Michael, Caffo Brian, Vogelstein Joshua T

机构信息

Johns Hopkins University, Baltimore, MD, United States.

Stanford University, Stanford, CA, United States.

出版信息

Imaging Neurosci (Camb). 2025 Jan 29;3. doi: 10.1162/imag_a_00458. eCollection 2025.

Abstract

Batch effects, undesirable sources of variability across multiple experiments, present significant challenges for scientific and clinical discoveries. Batch effects can (i) produce spurious signals and/or (ii) obscure genuine signals, contributing to the ongoing reproducibility crisis. Because batch effects are typically modeled as classical statistical effects, they often cannot differentiate between sources of variability due to confounding biases, which may lead them to erroneously conclude batch effects are present (or not). We formalize batch effects as causal effects, and introduce algorithms leveraging causal machinery, to address these concerns. Simulations illustrate that when non-causal methods provide the wrong answer, our methods either produce more accurate answers or "no answer," meaning they assert the data are inadequate to confidently conclude on the presence of a batch effect. Applying our causal methods to 27 neuroimaging datasets yields qualitatively similar results: in situations where it is unclear whether batch effects are present, non-causal methods confidently identify (or fail to identify) batch effects, whereas our causal methods assert that it is unclear whether there are batch effects or not. In instances where batch effects should be discernable, our techniques produce different results from prior art, each of which produce results more qualitatively similar to not applying any batch effect correction to the data at all. This work, therefore, provides a causal framework for understanding the potential capabilities and limitations of analysis of multi-site data.

摘要

批次效应作为多个实验中不受欢迎的变异性来源,给科学和临床发现带来了重大挑战。批次效应可能(i)产生虚假信号和/或(ii)掩盖真实信号,从而导致当前的可重复性危机。由于批次效应通常被建模为经典统计效应,它们往往无法区分由于混杂偏差导致的变异性来源,这可能导致它们错误地得出存在(或不存在)批次效应的结论。我们将批次效应形式化为因果效应,并引入利用因果机制的算法来解决这些问题。模拟结果表明,当非因果方法给出错误答案时,我们的方法要么给出更准确的答案,要么“没有答案”,这意味着它们认为数据不足以确定批次效应的存在。将我们的因果方法应用于27个神经影像数据集产生了定性相似的结果:在不清楚是否存在批次效应的情况下,非因果方法自信地识别(或未能识别)批次效应,而我们的因果方法则认为不清楚是否存在批次效应。在应该能够辨别批次效应的情况下,我们的技术产生的结果与现有技术不同,现有技术产生的结果在定性上更类似于根本不对数据应用任何批次效应校正。因此,这项工作提供了一个因果框架,用于理解多站点数据分析的潜在能力和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a702/12319767/3580a42d15d0/imag_a_00458_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验