Suppr超能文献

用于增强富镍正极材料锂离子扩散及结构稳定性的表面微结构工程

Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials.

作者信息

Zhuo Huanming, Zhao Shuangshuang, Xu Ruijie, Zhou Lu, Li Ye, Peng Yuehuan, Rao Xuelong, Tao Yuqiang, Ou Xing

机构信息

School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.

School of Metallurgy and Environment, Central South University, Changsha 410083, China.

出版信息

Nanomaterials (Basel). 2025 Jul 24;15(15):1144. doi: 10.3390/nano15151144.

Abstract

Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNiCoAlO (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0-4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability.

摘要

颗粒的表面微观结构在很大程度上决定了富镍氧化物阴极的电化学性能,这可以改善其界面动力学和结构稳定性,以实现其进一步的推广应用。在此,以具有代表性的LiNiCoAlO(NCA)材料为例,设计了一种通过引入界面ZnO位点来增强高镍材料界面特性的表面异质结结构构建策略(NCA@ZnO)。令人印象深刻的是,这种异质界面产生了强大的内建电场,显著改善了电子/锂离子扩散动力学。同时,ZnO层作为一种有效的物理屏障,可防止电解质腐蚀,显著抑制界面寄生反应,并最终优化NCA@ZnO的结构稳定性。得益于界面稳定性和动力学的同步优化,NCA@ZnO在3.0-4.5V的超高速率3C下循环160次后,容量保持率为83.7%,展现出优异的循环性能。卓越的电化学性能有效地证实了表面结构设计为获得具有增强的长循环稳定性的高性能阴极材料提供了一种关键方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ed3/12348175/901931837b43/nanomaterials-15-01144-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验