Chen Leo Tianlai, Quinn Zachary, Dumas Madeleine, Peng Christina, Hong Lauren, Lopez-Gonzalez Moises, Mestre Alexander, Watson Rio, Vincoff Sophia, Zhao Lin, Wu Jianli, Stavrand Audrey, Schaepers-Cheu Mayumi, Wang Tian Zi, Srijay Divya, Monticello Connor, Vure Pranay, Pulugurta Rishab, Pertsemlidis Sarah, Kholina Kseniia, Goel Shrey, DeLisa Matthew P, Chi Jen-Tsan Ashley, Truant Ray, Aguilar Hector C, Chatterjee Pranam
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Nat Biotechnol. 2025 Aug 13. doi: 10.1038/s41587-025-02761-2.
The computational design of protein-based binders presents unique opportunities to access 'undruggable' targets, but effective binder design often relies on stable three-dimensional structures or structure-influenced latent spaces. Here we introduce PepMLM, a target sequence-conditioned designer of de novo linear peptide binders. Using a masking strategy that positions cognate peptide sequences at the C terminus of target protein sequences, PepMLM finetunes the ESM-2 protein language model to fully reconstruct the binder region, achieving low perplexities matching or improving upon validated peptide-protein sequence pairs. After successful in silico benchmarking with AlphaFold-based docking, we experimentally validate the efficacy of PepMLM through both binding and degradation assays. PepMLM-derived peptides demonstrate sequence-specific binding to cancer and reproductive targets, including NCAM1 and AMHR2, and enable targeted degradation of proteins across diverse disease contexts, from Huntington's disease to live viral infections. Altogether, PepMLM enables the design of candidate binders to any target protein, without requiring structural input, facilitating broad applications in therapeutic development.
基于蛋白质的结合物的计算设计为攻克“不可成药”靶点提供了独特机遇,但有效的结合物设计通常依赖于稳定的三维结构或受结构影响的潜在空间。在此,我们介绍PepMLM,一种从头设计线性肽结合物的靶向序列条件设计工具。PepMLM采用一种将同源肽序列定位在靶蛋白序列C端的掩蔽策略,对ESM-2蛋白质语言模型进行微调,以完全重建结合区域,实现与经过验证的肽-蛋白质序列对相匹配或更优的低困惑度。在用基于AlphaFold的对接进行成功的计算机模拟基准测试后,我们通过结合和降解实验验证了PepMLM的有效性。PepMLM衍生的肽表现出与癌症和生殖靶点(包括NCAM1和AMHR2)的序列特异性结合,并能在从亨廷顿舞蹈症到活病毒感染等多种疾病背景下实现蛋白质的靶向降解。总之,PepMLM能够在无需结构输入的情况下设计针对任何靶蛋白的候选结合物,促进其在治疗开发中的广泛应用。