Fernández-Blázquez Miguel A, Ruiz-Sánchez de León José M, Sanz-Blasco Rubén, Verche Emilio, Ávila-Villanueva Marina, Gil-Moreno María José, Montenegro-Peña Mercedes, Terrón Carmen, Fernández-García Cristina, Gómez-Ramírez Jaime
Department of Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, C/ Iván Pavlov, 6, Madrid, 28049, Spain.
Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.
Sci Rep. 2025 Aug 13;15(1):29732. doi: 10.1038/s41598-025-14832-0.
The global increase in dementia cases highlights the importance of early detection and intervention, particularly for individuals at risk of mild cognitive impairment (MCI), a precursor to dementia. The aim of this study is to develop and validate machine learning (ML) models based on non-imaging features to predict the risk of MCI conversion in cognitively healthy older adults over a three-year period. Using data from 845 participants aged 65 to 87 years, we built five eXtreme Gradient Boosting (XGBoost) models of increasing complexity, incorporating demographic, self-reported, medical, and cognitive variables. The models were trained and evaluated using robust preprocessing techniques, including multiple imputation for missing data, Synthetic Minority Oversampling Technique (SMOTE) for class balancing, and SHapley Additive exPlanations (SHAP) for interpretability. Model performance improved with the inclusion of cognitive assessments, with the most comprehensive model (Model 5) achieving the highest accuracy (86%) and area under the curve (AUC = 0.8359). Feature importance analysis revealed that variables such as memory tests, depressive symptoms, and age were significant predictors of MCI conversion. In addition, an online risk calculator has been developed and made available free of charge to facilitate clinical use and provide a practical, cost-effective tool for early detection in diverse healthcare settings ( https://aimar-project.shinyapps.io/MCI-risk-calculator/ ). This study highlights the potential of non-imaging ML models for early detection of MCI and emphasizes their accessibility and clinical utility. Future research should focus on validating these models in different populations and examining their integration with personalized intervention strategies to reduce dementia risk.
全球痴呆症病例的增加凸显了早期检测和干预的重要性,特别是对于有轻度认知障碍(MCI)风险的个体,MCI是痴呆症的前驱症状。本研究的目的是开发并验证基于非影像特征的机器学习(ML)模型,以预测认知健康的老年人在三年时间内发生MCI转化的风险。我们使用了845名年龄在65至87岁之间参与者的数据,构建了五个复杂度不断增加的极端梯度提升(XGBoost)模型,纳入了人口统计学、自我报告、医学和认知变量。这些模型使用了稳健的预处理技术进行训练和评估,包括对缺失数据的多重插补、用于类别平衡的合成少数过采样技术(SMOTE)以及用于可解释性的SHapley加性解释(SHAP)。随着认知评估的纳入,模型性能有所提高,最全面的模型(模型5)达到了最高准确率(86%)和曲线下面积(AUC = 0.8359)。特征重要性分析表明,诸如记忆测试、抑郁症状和年龄等变量是MCI转化的重要预测因素。此外,还开发了一个在线风险计算器并免费提供,以方便临床使用,并为在不同医疗环境中进行早期检测提供一个实用、经济高效的工具(https://aimar-project.shinyapps.io/MCI-risk-calculator/)。本研究突出了非影像ML模型在早期检测MCI方面的潜力,并强调了它们的可及性和临床实用性。未来的研究应侧重于在不同人群中验证这些模型,并研究它们与个性化干预策略的整合,以降低痴呆症风险。