Suppr超能文献

利用机器学习和非成像特征开发一种用于痴呆症的诊断工具。

Develop a diagnostic tool for dementia using machine learning and non-imaging features.

作者信息

Wang Huan, Sheng Li, Xu Shanhu, Jin Yu, Jin Xiaoqing, Qiao Song, Chen Qingqing, Xing Wenmin, Zhao Zhenlei, Yan Jing, Mao Genxiang, Xu Xiaogang

机构信息

Department of Biostatistics, The George Washington University, Washington, DC, United States.

Department of Mathematics, Drexel University, Philadelphia, PA, United States.

出版信息

Front Aging Neurosci. 2022 Aug 29;14:945274. doi: 10.3389/fnagi.2022.945274. eCollection 2022.

Abstract

BACKGROUND

Early identification of Alzheimer's disease or mild cognitive impairment can help guide direct prevention and supportive treatments, improve outcomes, and reduce medical costs. Existing advanced diagnostic tools are mostly based on neuroimaging and suffer from certain problems in cost, reliability, repeatability, accessibility, ease of use, and clinical integration. To address these problems, we developed, evaluated, and implemented an early diagnostic tool using machine learning and non-imaging factors.

METHODS AND RESULTS

A total of 654 participants aged 65 or older from the Nursing Home in Hangzhou, China were identified. Information collected from these patients includes dementia status and 70 demographic, cognitive, socioeconomic, and clinical features. Logistic regression, support vector machine (SVM), neural network, random forest, extreme gradient boosting (XGBoost), least absolute shrinkage and selection operator (LASSO), and best subset models were trained, tuned, and internally validated using a novel double cross validation algorithm and multiple evaluation metrics. The trained models were also compared and externally validated using a separate dataset with 1,100 participants from four communities in Zhejiang Province, China. The model with the best performance was then identified and implemented online with a friendly user interface. For the nursing dataset, the top three models are the neural network (AUROC = 0.9435), XGBoost (AUROC = 0.9398), and SVM with the polynomial kernel (AUROC = 0.9213). With the community dataset, the best three models are the random forest (AUROC = 0.9259), SVM with linear kernel (AUROC = 0.9282), and SVM with polynomial kernel (AUROC = 0.9213). The F1 scores and area under the precision-recall curve showed that the SVMs, neural network, and random forest were robust on the unbalanced community dataset. Overall the SVM with the polynomial kernel was found to be the best model. The LASSO and best subset models identified 17 features most relevant to dementia prediction, mostly from cognitive test results and socioeconomic characteristics.

CONCLUSION

Our non-imaging-based diagnostic tool can effectively predict dementia outcomes. The tool can be conveniently incorporated into clinical practice. Its online implementation allows zero barriers to its use, which enhances the disease's diagnosis, improves the quality of care, and reduces costs.

摘要

背景

早期识别阿尔茨海默病或轻度认知障碍有助于指导直接预防和支持性治疗,改善治疗效果并降低医疗成本。现有的先进诊断工具大多基于神经影像学,在成本、可靠性、可重复性、可及性、易用性和临床整合方面存在一定问题。为解决这些问题,我们开发、评估并实施了一种使用机器学习和非影像学因素的早期诊断工具。

方法与结果

共纳入了来自中国杭州养老院的654名65岁及以上参与者。从这些患者收集的信息包括痴呆状态以及70项人口统计学、认知、社会经济和临床特征。使用一种新颖的双重交叉验证算法和多个评估指标对逻辑回归、支持向量机(SVM)、神经网络、随机森林、极端梯度提升(XGBoost)、最小绝对收缩和选择算子(LASSO)以及最佳子集模型进行训练、调优和内部验证。还使用来自中国浙江省四个社区的1100名参与者的单独数据集对训练好的模型进行比较和外部验证。然后确定性能最佳的模型并通过友好的用户界面在线实施。对于养老院数据集,表现最佳的三个模型是神经网络(曲线下面积[AUC] = 0.9435)、XGBoost(AUC = 0.9398)以及具有多项式核的SVM(AUC = 0.9213)。对于社区数据集,表现最佳的三个模型是随机森林(AUC = 0.9259)、具有线性核的SVM(AUC = 0.9282)以及具有多项式核的SVM(AUC = 0.9213)。F1分数和精确召回率曲线下面积表明,SVM、神经网络和随机森林在不平衡的社区数据集中表现稳健。总体而言,具有多项式核的SVM被认为是最佳模型。LASSO和最佳子集模型确定了与痴呆预测最相关的17个特征,大多来自认知测试结果和社会经济特征。

结论

我们基于非影像学的诊断工具能够有效预测痴呆结局。该工具可方便地纳入临床实践。其在线实施使其使用毫无障碍,这增强了疾病的诊断,提高了护理质量并降低了成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad7/9461143/8c9f2d5432ad/fnagi-14-945274-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验