Instituto de Salud Carlos III, Centro de Alzheimer Fundación Reina Sofía, Valderrebollo 5, 28031, Madrid, Spain.
Sci Rep. 2020 Nov 26;10(1):20630. doi: 10.1038/s41598-020-77296-4.
Alzheimer's Disease is a complex, multifactorial, and comorbid condition. The asymptomatic behavior in the early stages makes the identification of the disease onset particularly challenging. Mild cognitive impairment (MCI) is an intermediary stage between the expected decline of normal aging and the pathological decline associated with dementia. The identification of risk factors for MCI is thus sorely needed. Self-reported personal information such as age, education, income level, sleep, diet, physical exercise, etc. is called to play a key role not only in the early identification of MCI but also in the design of personalized interventions and the promotion of patients empowerment. In this study, we leverage a large longitudinal study on healthy aging in Spain, to identify the most important self-reported features for future conversion to MCI. Using machine learning (random forest) and permutation-based methods we select the set of most important self-reported variables for MCI conversion which includes among others, subjective cognitive decline, educational level, working experience, social life, and diet. Subjective cognitive decline stands as the most important feature for future conversion to MCI across different feature selection techniques.
阿尔茨海默病是一种复杂的、多因素的、合并症较多的疾病。在早期无症状的行为使得识别疾病的发作变得特别具有挑战性。轻度认知障碍(MCI)是正常衰老预期下降与痴呆相关病理下降之间的中间阶段。因此,非常需要确定 MCI 的风险因素。自我报告的个人信息,如年龄、教育程度、收入水平、睡眠、饮食、体育锻炼等,不仅在 MCI 的早期识别中起着关键作用,而且在个性化干预措施的设计和患者赋权的促进中也起着关键作用。在这项研究中,我们利用西班牙一项关于健康老龄化的大型纵向研究,确定了对未来转化为 MCI 最重要的自我报告特征。使用机器学习(随机森林)和基于置换的方法,我们选择了一组对 MCI 转化最重要的自我报告变量,其中包括主观认知下降、教育水平、工作经验、社会生活和饮食。主观认知下降是不同特征选择技术中未来转化为 MCI 的最重要特征。