Farouk Sabah Mohamed, Tayeb Aghareed M, Abdel-Hamid Shereen M S, Osman Randa M, Mustafa Hassan M M
Egyptian Academy for Engineering and Advanced Technology (EA&EAT), Affiliated to the Ministry of Military Production, Chemical Engineering Department, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt.
Faculty of Engineering, Minia University, Misr Aswan Agricultural Rd., EL MAHATTA, Menia Governorate, 2431384, Egypt.
BMC Chem. 2025 Aug 13;19(1):241. doi: 10.1186/s13065-025-01604-0.
The rapid depletion of fossil fuel reserves has intensified the pursuit of sustainable alternatives for compression-ignition engines. Biodiesel, produced from renewable feedstocks such as waste cooking oil (WCO), offers an environmentally benign substitute that can be utilized either neat or in blends with conventional diesel. This study examines the comparative efficacy of nano-calcium oxide (CaO) and nano-magnesium oxide (MgO) catalysts in synthesizing biodiesel from WCO, emphasizing their physicochemical characteristics and subsequent effects on diesel engine performance and emissions. Distinct from prior investigations that focused on single catalysts or lacked engine-level validation, this work integrates detailed catalyst characterization (SEM, BET, XRD) with comprehensive combustion testing of various biodiesel blends. The synthesized biodiesel was blended with petroleum diesel at volumetric ratios of B10, B20, and B30 and evaluated in a single-cylinder diesel engine. Characterization results demonstrated superior catalytic activity of nano-CaO (average particle size: 67.1 nm; specific surface area: 80.7 m²/g) compared to nano-MgO (32.5 nm; 60.2 m²/g). Engine performance testing revealed that the NC(CaO)B10 blend reduced brake-specific fuel consumption by 8.3% and improved thermal efficiency at 75% engine load relative to baseline diesel. Furthermore, NC(MgO)B30 lowered CO₂ emissions by 4.2%, whereas NC(CaO)B30 achieved a 0.7% reduction in CO emissions and an approximate 3% increase in excess oxygen availability. These findings underscore the potential of CaO-based Nano catalysts, particularly at lower blend ratios, to enable cleaner and more efficient diesel engine operation. This work advances the case for nanotechnology-enhanced biodiesel as a viable component of sustainable fuel systems and highlights opportunities for optimization through higher blend ratios and synergistic catalyst combinations.
化石燃料储备的迅速枯竭加剧了对压缩点火发动机可持续替代燃料的追求。由废食用油(WCO)等可再生原料生产的生物柴油提供了一种环境友好的替代品,既可以纯用,也可以与传统柴油混合使用。本研究考察了纳米氧化钙(CaO)和纳米氧化镁(MgO)催化剂在由WCO合成生物柴油方面的比较效果,重点关注它们的物理化学特性以及对柴油发动机性能和排放的后续影响。与之前专注于单一催化剂或缺乏发动机层面验证的研究不同,这项工作将详细的催化剂表征(扫描电子显微镜、比表面积测定、X射线衍射)与各种生物柴油混合物的全面燃烧测试相结合。合成的生物柴油与石油柴油按体积比B10、B20和B30混合,并在单缸柴油发动机中进行评估。表征结果表明,与纳米氧化镁(平均粒径:32.5纳米;比表面积:60.²2米²/克)相比,纳米氧化钙(平均粒径:67.1纳米;比表面积:80.7米²/克)具有更高的催化活性。发动机性能测试表明,相对于基准柴油,NC(CaO)B10混合物在75%发动机负荷下将制动比油耗降低了8.3%,并提高了热效率。此外,NC(MgO)B30使二氧化碳排放量降低了4.2%,而NC(CaO)B30使一氧化碳排放量降低了0.7%,过量氧气可用性增加了约3%。这些发现强调了基于氧化钙的纳米催化剂的潜力,特别是在较低混合比例下,能够实现更清洁、更高效的柴油发动机运行。这项工作推进了纳米技术增强生物柴油作为可持续燃料系统可行组成部分的案例,并突出了通过更高混合比例和协同催化剂组合进行优化的机会。