Suppr超能文献

用于准确且可解释的皮肤病变诊断的边缘和颜色纹理感知局部特征袋模型

Edge- and Color-Texture-Aware Bag-of-Local-Features Model for Accurate and Interpretable Skin Lesion Diagnosis.

作者信息

Liu Dichao, Suzuki Kenji

机构信息

Biomedical Artificial Intelligence Research Unit, Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Kanagawa, Japan.

出版信息

Diagnostics (Basel). 2025 Jul 27;15(15):1883. doi: 10.3390/diagnostics15151883.

Abstract

: Deep models have achieved remarkable progress in the diagnosis of skin lesions but face two significant drawbacks. First, they cannot effectively explain the basis of their predictions. Although attention visualization tools like Grad-CAM can create heatmaps using deep features, these features often have large receptive fields, resulting in poor spatial alignment with the input image. Second, the design of most deep models neglects interpretable traditional visual features inspired by clinical experience, such as color-texture and edge features. This study aims to propose a novel approach integrating deep learning with traditional visual features to handle these limitations. : We introduce the edge- and color-texture-aware bag-of-local-features model (ECT-BoFM), which limits the receptive field of deep features to a small size and incorporates edge and color-texture information from traditional features. A non-rigid reconstruction strategy ensures that traditional features enhance rather than constrain the model's performance. : Experiments on the ISIC 2018 and 2019 datasets demonstrated that ECT-BoFM yields precise heatmaps and achieves high diagnostic performance, outperforming state-of-the-art methods. Furthermore, training models using only a small number of the most predictive patches identified by ECT-BoFM achieved diagnostic performance comparable to that obtained using full images, demonstrating its efficiency in exploring key clues. : ECT-BoFM successfully combines deep learning and traditional visual features, addressing the interpretability and diagnostic accuracy challenges of existing methods. ECT-BoFM provides an interpretable and accurate framework for skin lesion diagnosis, advancing the integration of AI in dermatological research and clinical applications.

摘要

深度模型在皮肤病变诊断方面取得了显著进展,但面临两个重大缺陷。首先,它们无法有效解释其预测的依据。尽管像Grad-CAM这样的注意力可视化工具可以利用深度特征创建热图,但这些特征通常具有较大的感受野,导致与输入图像的空间对齐性较差。其次,大多数深度模型的设计忽略了受临床经验启发的可解释传统视觉特征,如颜色纹理和边缘特征。本研究旨在提出一种将深度学习与传统视觉特征相结合的新方法来解决这些局限性。

我们引入了边缘和颜色纹理感知局部特征袋模型(ECT-BoFM),该模型将深度特征的感受野限制在较小尺寸,并纳入传统特征中的边缘和颜色纹理信息。一种非刚性重建策略确保传统特征增强而不是限制模型的性能。

在ISIC 2018和2019数据集上的实验表明,ECT-BoFM生成了精确的热图并实现了高诊断性能,优于现有方法。此外,仅使用ECT-BoFM识别出的少量最具预测性的补丁训练模型,其诊断性能与使用完整图像获得的性能相当,证明了其在探索关键线索方面的效率。

ECT-BoFM成功地将深度学习与传统视觉特征相结合,解决了现有方法的可解释性和诊断准确性挑战。ECT-BoFM为皮肤病变诊断提供了一个可解释且准确的框架,推动了人工智能在皮肤病学研究和临床应用中的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee8b/12346706/0925fd00f680/diagnostics-15-01883-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验