文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用新型YOLO模型提高竹子颜色和斑点的识别率

Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model.

作者信息

Zhang Yunlong, Nie Tangjie, Zeng Qingping, Chen Lijie, Liu Wei, Zhang Wei, Tong Long

机构信息

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China.

Chongqing Academy of Forestry, Chongqing 401147, China.

出版信息

Plants (Basel). 2025 Jul 24;14(15):2287. doi: 10.3390/plants14152287.


DOI:10.3390/plants14152287
PMID:40805635
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12348274/
Abstract

The sheaths of bamboo shoots, characterized by distinct colors and spotting patterns, are key phenotypic markers influencing species classification, market value, and genetic studies. This study introduces YOLOv8-BS, a deep learning model optimized for detecting these traits in using a dataset from Jinfo Mountain, China. Enhanced by data augmentation techniques, including translation, flipping, and contrast adjustment, YOLOv8-BS outperformed benchmark models (YOLOv7, YOLOv5, YOLOX, and Faster R-CNN) in color and spot detection. For color detection, it achieved a precision of 85.9%, a recall of 83.4%, an F1-score of 84.6%, and an average precision (AP) of 86.8%. For spot detection, it recorded a precision of 90.1%, a recall of 92.5%, an F1-score of 91.1%, and an AP of 96.1%. These results demonstrate superior accuracy and robustness, enabling precise phenotypic analysis for bamboo germplasm evaluation and genetic diversity studies. YOLOv8-BS supports precision agriculture by providing a scalable tool for sustainable bamboo-based industries. Future improvements could enhance model adaptability for fine-grained varietal differences and real-time applications.

摘要

竹笋的笋壳具有独特的颜色和斑点图案,是影响物种分类、市场价值和遗传研究的关键表型标记。本研究引入了YOLOv8-BS,这是一种深度学习模型,使用来自中国金佛山的数据集对其进行优化,以检测这些特征。通过平移、翻转和对比度调整等数据增强技术的强化,YOLOv8-BS在颜色和斑点检测方面优于基准模型(YOLOv7、YOLOv5、YOLOX和Faster R-CNN)。在颜色检测方面,它的精度达到85.9%,召回率为83.4%,F1分数为84.6%,平均精度(AP)为86.8%。在斑点检测方面,它的精度为90.1%,召回率为92.5%,F1分数为91.1%,AP为96.1%。这些结果证明了其卓越的准确性和鲁棒性,能够为竹子种质评估和遗传多样性研究进行精确的表型分析。YOLOv8-BS通过为可持续的竹产业提供一个可扩展的工具来支持精准农业。未来的改进可以提高模型对细粒度品种差异和实时应用的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/e74af39e0089/plants-14-02287-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/ebed1e3e2947/plants-14-02287-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/65d1d4f6606d/plants-14-02287-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/7b86c3601921/plants-14-02287-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/b2c8860b872b/plants-14-02287-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/75fa4e264608/plants-14-02287-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/e74af39e0089/plants-14-02287-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/ebed1e3e2947/plants-14-02287-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/65d1d4f6606d/plants-14-02287-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/7b86c3601921/plants-14-02287-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/b2c8860b872b/plants-14-02287-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/75fa4e264608/plants-14-02287-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cda/12348274/e74af39e0089/plants-14-02287-g006.jpg

相似文献

[1]
Improving the Recognition of Bamboo Color and Spots Using a Novel YOLO Model.

Plants (Basel). 2025-7-24

[2]
Image-Based Dietary Assessment Using the Swedish Plate Model: Evaluation of Deep Learning-Based You Only Look Once (YOLO) Models.

JMIR Form Res. 2025-8-14

[3]
Automated detection of diabetic retinopathy lesions in ultra-widefield fundus images using an attention-augmented YOLOv8 framework.

Front Cell Dev Biol. 2025-7-24

[4]
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects.

Sensors (Basel). 2025-7-31

[5]
YOLOv8-Scm: an improved model for citrus fruit sunburn identification and classification in complex natural scenes.

Front Plant Sci. 2025-7-7

[6]
Automatic detection of lucky bamboo nodes based on Improved YOLOv7.

Front Plant Sci. 2025-7-17

[7]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[8]
Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation Study.

JMIR AI. 2025-5-1

[9]
YOLOV8-CMS: a high-accuracy deep learning model for automated citrus leaf disease classification and grading.

Plant Methods. 2025-6-24

[10]
Integrating computer vision algorithms and RFID system for identification and tracking of group-housed animals: an example with pigs.

J Anim Sci. 2024-1-3

本文引用的文献

[1]
A Review of the Nutritional Composition, Storage Challenges, Processing Technology and Widespread Use of Bamboo Shoots.

Foods. 2024-11-6

[2]
Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensis by UPLC-ESI-MS/MS and RNA sequencing.

BMC Plant Biol. 2023-10-6

[3]
Advancements and challenges in bamboo breeding for sustainable development.

Tree Physiol. 2023-10-8

[4]
Influence of Insufficient Dataset Augmentation on IoU and Detection Threshold in CNN Training for Object Detection on Aerial Images.

Sensors (Basel). 2022-11-23

[5]
Applications of machine learning techniques for enhancing nondestructive food quality and safety detection.

Crit Rev Food Sci Nutr. 2023

[6]
Image Segmentation Using Deep Learning: A Survey.

IEEE Trans Pattern Anal Mach Intell. 2022-7

[7]
Effects of Variations in Color and Organ of Color Expression in Urban Ornamental Bamboo Landscapes on the Physiological and Psychological Responses of College Students.

Int J Environ Res Public Health. 2021-1-28

[8]
Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review.

Plant Phenomics. 2020-4-9

[9]
The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics.

Food Chem. 2020-6-20

[10]
First Report of Brown Culm Streak of Phyllostachys praecox Caused by Arthrinium arundinis in Nanjing, China.

Plant Dis. 2014-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索