Zhang Yunlong, Nie Tangjie, Zeng Qingping, Chen Lijie, Liu Wei, Zhang Wei, Tong Long
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China.
Chongqing Academy of Forestry, Chongqing 401147, China.
Plants (Basel). 2025 Jul 24;14(15):2287. doi: 10.3390/plants14152287.
The sheaths of bamboo shoots, characterized by distinct colors and spotting patterns, are key phenotypic markers influencing species classification, market value, and genetic studies. This study introduces YOLOv8-BS, a deep learning model optimized for detecting these traits in using a dataset from Jinfo Mountain, China. Enhanced by data augmentation techniques, including translation, flipping, and contrast adjustment, YOLOv8-BS outperformed benchmark models (YOLOv7, YOLOv5, YOLOX, and Faster R-CNN) in color and spot detection. For color detection, it achieved a precision of 85.9%, a recall of 83.4%, an F1-score of 84.6%, and an average precision (AP) of 86.8%. For spot detection, it recorded a precision of 90.1%, a recall of 92.5%, an F1-score of 91.1%, and an AP of 96.1%. These results demonstrate superior accuracy and robustness, enabling precise phenotypic analysis for bamboo germplasm evaluation and genetic diversity studies. YOLOv8-BS supports precision agriculture by providing a scalable tool for sustainable bamboo-based industries. Future improvements could enhance model adaptability for fine-grained varietal differences and real-time applications.
竹笋的笋壳具有独特的颜色和斑点图案,是影响物种分类、市场价值和遗传研究的关键表型标记。本研究引入了YOLOv8-BS,这是一种深度学习模型,使用来自中国金佛山的数据集对其进行优化,以检测这些特征。通过平移、翻转和对比度调整等数据增强技术的强化,YOLOv8-BS在颜色和斑点检测方面优于基准模型(YOLOv7、YOLOv5、YOLOX和Faster R-CNN)。在颜色检测方面,它的精度达到85.9%,召回率为83.4%,F1分数为84.6%,平均精度(AP)为86.8%。在斑点检测方面,它的精度为90.1%,召回率为92.5%,F1分数为91.1%,AP为96.1%。这些结果证明了其卓越的准确性和鲁棒性,能够为竹子种质评估和遗传多样性研究进行精确的表型分析。YOLOv8-BS通过为可持续的竹产业提供一个可扩展的工具来支持精准农业。未来的改进可以提高模型对细粒度品种差异和实时应用的适应性。
Plants (Basel). 2025-7-24
Front Plant Sci. 2025-7-17
Tree Physiol. 2023-10-8
Crit Rev Food Sci Nutr. 2023
IEEE Trans Pattern Anal Mach Intell. 2022-7
Int J Environ Res Public Health. 2021-1-28
Plant Phenomics. 2020-4-9