Erkek Fatmanur, Kizilkaya Rana, Baybara Seyma, Gulden Gamze, Sert Berranur, Yazicilar Muzeyyen Sena, Yilmaz Menekse Cagla, Odabas Sibel Pinar, Bal Enes, Yelgen Gamze, Teymur Tarik, Ay Yasin, Dogdu Solen, Tiryaki Nilufer Neslihan, Baran Buse, Gelsin Beste, Araz Hasret, Cavrar Ilayda, Tastan Cihan
Biotechnology, Institute of Science and Technology, Üsküdar University, Istanbul, Turkey.
Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey.
Sci Rep. 2025 Aug 6;15(1):28699. doi: 10.1038/s41598-025-01655-2.
In the realm of synthetic biology, the pursuit of streamlined experimental processes has given rise to innovative technologies poised to redefine research paradigms. Traditional workflows, laden with laborious and error-prone stages, incur prolonged timelines and escalating costs. Autonomous liquid processing systems emerge as promising tools, holding the potential to enhance precision and efficiency. Yet, the adoption of fully automated systems is impeded by prohibitive costs and maintenance expenses. This study introduces the CRISPR.BOT as a transformative solution, a pioneering autonomous genetic engineering platform designed to revolutionize molecular biology practices. The CRISPR.BOT demonstrates its prowess through a series of pivotal experiments, ranging from the efficient transfer of green fluorescent protein (GFP) encoding plasmid DNA into bacterial hosts to intricate manipulations involving lentiviral transduction and CRISPR-Cas9-mediated genetic editing in human cell lines. Notably, the CRISPR.BOT achieves exceptional results in single-cell subcloning, yielding GFP + CRISPR-gRNA + cells with unprecedented purity levels of 90-100%. Moreover, this study underscores the CRISPR.BOT's potential to facilitate safe genetic engineering practices, enabling researchers to work with pathogenic microorganisms like the SARS CoV-2 virus without direct human contact. An exploration into the cost-effectiveness of LEGO Mindstorms robots reveals their suitability for daily laboratory routines, presenting a cost reduction of up to tenfold compared to commercial alternatives. In conclusion, the CRISPR.BOT emerges as a transformative force in synthetic biology, offering a pathway to redefine experimental processes, enhance precision, and unlock new possibilities in genetic engineering. This research marks a paradigm shift where automation and innovation converge, empowering researchers to navigate uncharted territories with confidence and efficiency.
在合成生物学领域,对简化实验流程的追求催生了有望重新定义研究范式的创新技术。传统的工作流程包含繁琐且容易出错的阶段,导致时间延长和成本不断上升。自动液体处理系统成为有前景的工具,具有提高精度和效率的潜力。然而,全自动化系统的采用受到高昂成本和维护费用的阻碍。本研究引入了CRISPR.BOT作为一种变革性解决方案,这是一个开创性的自主基因工程平台,旨在彻底改变分子生物学实践。CRISPR.BOT通过一系列关键实验展示了其卓越能力,从将编码绿色荧光蛋白(GFP)的质粒DNA高效转移到细菌宿主,到在人类细胞系中进行涉及慢病毒转导和CRISPR-Cas9介导的基因编辑的复杂操作。值得注意的是,CRISPR.BOT在单细胞亚克隆方面取得了优异成果,产生了纯度达到90%-100%这一前所未有的水平的GFP+CRISPR-gRNA+细胞。此外,本研究强调了CRISPR.BOT在促进安全基因工程实践方面的潜力,使研究人员能够在不直接接触人类的情况下处理像SARS-CoV-2病毒这样的致病微生物。对乐高Mindstorms机器人成本效益的探索表明它们适用于日常实验室工作,与商业替代品相比成本降低了多达十倍。总之,CRISPR.BOT成为合成生物学中的一股变革力量,提供了一条重新定义实验流程、提高精度并在基因工程中解锁新可能性的途径。这项研究标志着一个范式转变,即自动化与创新相结合,使研究人员能够自信且高效地探索未知领域。