Suppr超能文献

SBCS-Net:用于传感器网络压缩感知的稀疏贝叶斯与深度学习框架

SBCS-Net: Sparse Bayesian and Deep Learning Framework for Compressed Sensing in Sensor Networks.

作者信息

Gao Xianwei, Yao Xiang, Chen Bi, Zhang Honghao

机构信息

Beijing Electronic Science and Technology Institute, Beijing 100070, China.

出版信息

Sensors (Basel). 2025 Jul 23;25(15):4559. doi: 10.3390/s25154559.

Abstract

Compressed sensing is widely used in modern resource-constrained sensor networks. However, achieving high-quality and robust signal reconstruction under low sampling rates and noise interference remains challenging. Traditional CS methods have limited performance, so many deep learning-based CS models have been proposed. Although these models show strong fitting capabilities, they often lack the ability to handle complex noise in sensor networks, which affects their performance stability. To address these challenges, this paper proposes SBCS-Net. This framework innovatively expands the iterative process of sparse Bayesian compressed sensing using convolutional neural networks and Transformer. The core of SBCS-Net is to optimize key SBL parameters through end-to-end learning. This can adaptively improve signal sparsity and probabilistically process measurement noise, while fully leveraging the powerful feature extraction and global context modeling capabilities of deep learning modules. To comprehensively evaluate its performance, we conduct systematic experiments on multiple public benchmark datasets. These studies include comparisons with various advanced and traditional compressed sensing methods, comprehensive noise robustness tests, ablation studies of key components, computational complexity analysis, and rigorous statistical significance tests. Extensive experimental results consistently show that SBCS-Net outperforms many mainstream methods in both reconstruction accuracy and visual quality. In particular, it exhibits excellent robustness under challenging conditions such as extremely low sampling rates and strong noise. Therefore, SBCS-Net provides an effective solution for high-fidelity, robust signal recovery in sensor networks and related fields.

摘要

压缩感知在现代资源受限的传感器网络中得到了广泛应用。然而,在低采样率和噪声干扰下实现高质量和鲁棒的信号重建仍然具有挑战性。传统的压缩感知方法性能有限,因此人们提出了许多基于深度学习的压缩感知模型。尽管这些模型显示出强大的拟合能力,但它们往往缺乏处理传感器网络中复杂噪声的能力,这影响了它们的性能稳定性。为了应对这些挑战,本文提出了SBCS-Net。该框架创新性地利用卷积神经网络和Transformer扩展了稀疏贝叶斯压缩感知的迭代过程。SBCS-Net的核心是通过端到端学习优化关键的稀疏贝叶斯学习(SBL)参数。这可以自适应地提高信号稀疏性并对测量噪声进行概率处理,同时充分利用深度学习模块强大的特征提取和全局上下文建模能力。为了全面评估其性能,我们在多个公共基准数据集上进行了系统实验。这些研究包括与各种先进和传统压缩感知方法的比较、全面的噪声鲁棒性测试、关键组件的消融研究、计算复杂度分析以及严格的统计显著性测试。大量实验结果一致表明,SBCS-Net在重建精度和视觉质量方面均优于许多主流方法。特别是,它在极低采样率和强噪声等具有挑战性的条件下表现出优异的鲁棒性。因此,SBCS-Net为传感器网络及相关领域中的高保真、鲁棒信号恢复提供了一种有效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eada/12349312/e72e2e83eac6/sensors-25-04559-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验