Suppr超能文献

小样本条件下基于元学习和改进多通道卷积神经网络的柱塞泵故障诊断方法

Fault Diagnosis Method of Plunger Pump Based on Meta-Learning and Improved Multi-Channel Convolutional Neural Network Under Small Sample Condition.

作者信息

Yang Xiwang, Ma Jiancheng, Hu Hongjun, Huang Jinying, Jing Licheng

机构信息

School of Information and Communication Engineering, Shanxi University of Electronic Science and Technology, Linfen 041000, China.

School of Computer Science and Technology, North University of China, Taiyuan 030051, China.

出版信息

Sensors (Basel). 2025 Jul 24;25(15):4587. doi: 10.3390/s25154587.

Abstract

A fault diagnosis method based on meta-learning and an improved multi-channel convolutional neural network (MAML-MCCNN-ISENet) was proposed to solve the problems of insufficient feature extraction and low fault type identification accuracy of vibration signals at small sample sizes. The signal is first preprocessed using adaptive chirp mode decomposition (ACMD) methods. A multi-channel input structure is then employed to process the multidimensional signal information after preprocessing. The improved squeeze and excitation networks (ISENets) have been enhanced to concurrently enhance the network's adaptive perception of the significance of each channel feature. On this basis, a meta-learning strategy is introduced, the learning process of model initialization parameters is improved, the network is optimized by a multi-task learning mechanism, and the initial parameters of the diagnosis model are adaptively adjusted, so that the model can quickly adapt to new fault diagnosis tasks on limited datasets. Then, the overfitting problem under small sample conditions is alleviated, and the accuracy and robustness of fault identification are improved. Finally, the performance of the model is verified on the experimental data of the fault diagnosis of the laboratory plunger pump and the vibration dataset of the centrifugal pump of the Saint Longoval Institute of Engineering and Technology. The results show that the diagnostic accuracy of the proposed method for various diagnostic tasks can reach more than 90% on small samples.

摘要

为了解决小样本情况下振动信号特征提取不足和故障类型识别准确率低的问题,提出了一种基于元学习和改进的多通道卷积神经网络的故障诊断方法(MAML-MCCNN-ISENet)。首先使用自适应啁啾模式分解(ACMD)方法对信号进行预处理。然后采用多通道输入结构来处理预处理后的多维信号信息。改进的挤压与激励网络(ISENets)得到增强,以同时增强网络对各通道特征重要性的自适应感知。在此基础上,引入元学习策略,改进模型初始化参数的学习过程,通过多任务学习机制对网络进行优化,自适应调整诊断模型的初始参数,使模型能够在有限数据集上快速适应新的故障诊断任务。进而缓解小样本条件下的过拟合问题,提高故障识别的准确率和鲁棒性。最后,在实验室柱塞泵故障诊断的实验数据以及圣龙戈瓦尔工程技术学院离心泵振动数据集上验证了该模型的性能。结果表明,该方法在小样本上对各种诊断任务的诊断准确率可达90%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b9/12349184/95a9a2712187/sensors-25-04587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验