Ye Haonan, Tian Hongjun, Wu Qingyun, Xue Yihong, Xiao Jiayu, Liu Guijie, Xiong Yang
College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao 266404, China.
Sensors (Basel). 2025 Jul 30;25(15):4699. doi: 10.3390/s25154699.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework's superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems.
在复杂的海洋工程场景中,自主无人水面航行器(USV)的运行需要强大的导航、制导和控制技术。这些系统需要可靠的基于传感器的目标检测以及高效、安全且节能的路径规划。为应对这些多方面的挑战,本文提出了一种新颖的协同人工智能框架。该框架集成了:(1)对Swin-Transformer的一种新颖改编,用于从原始视觉数据生成密集的语义风险地图,使系统能够解读诸如太阳眩光和波涛汹涌的水面等模糊的海洋状况,实现对制导至关重要的实时环境理解;(2)一种具有时空注意力制导的Transformer增强A星(T-ASTAR)算法,用于生成全局近最优且节能的静态路径;(3)一个经过领域适配的TD3智能体,其具有一种新颖的节能奖励函数,针对USV的水动力约束进行优化,使其适用于为USV量身定制的长续航任务,以执行动态局部路径优化和实时避障,形成关键控制要素;以及(4)CUDA加速,以满足实时海洋工程应用的计算需求。仿真和实际数据验证了该框架相对于A*和RRT等基准的优越性,通过CUDA加速实现了路线缩短30%、转弯次数减少70%、动态碰撞次数减少64.7%以及地图生成速度提高215倍。本研究强调了在分层协同中集成强大人工智能组件的重要性,包括基于人工智能的感知、用于制导的分层决策规划以及用于控制的多阶段最优搜索算法。所提出的解决方案显著提升了USV的自主性,解决了无人海事系统在动态环境中的导航、避障和能量受限运行等关键海洋工程挑战。