文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用增强协方差矩阵感知深度卷积神经网络的非循环信号频谱感知

Spectrum Sensing for Noncircular Signals Using Augmented Covariance-Matrix-Aware Deep Convolutional Neural Network.

作者信息

Chen Songlin, He Zhenqing, Song Wenze, Sun Guohao

机构信息

Southwest China Institute of Electronic Technology, Chengdu 610036, China.

School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.

出版信息

Sensors (Basel). 2025 Aug 4;25(15):4791. doi: 10.3390/s25154791.


DOI:10.3390/s25154791
PMID:40807956
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349617/
Abstract

This work investigates spectrum sensing in cognitive radio networks, where multi-antenna secondary users aim to detect the spectral occupancy of noncircular signals transmitted by primary users. Specifically, we propose a deep-learning-based spectrum sensing approach using an augmented covariance-matrix-aware convolutional neural network (CNN). The core innovation of our approach lies in employing an augmented sample covariance matrix, which integrates both a standard covariance matrix and complementary covariance matrix, thereby fully exploiting the statistical properties of noncircular signals. By feeding augmented sample covariance matrices into the designed CNN architecture, the proposed approach effectively learns discriminative patterns from the underlying data structure, without stringent model constraints. Meanwhile, our approach eliminates the need for restrictive model assumptions and significantly enhances the detection performance by fully exploiting noncircular signal characteristics. Various experimental results demonstrate the significant performance improvement and generalization capability of the proposed approach compared to existing benchmark methods.

摘要

这项工作研究认知无线电网络中的频谱感知,其中多天线次用户旨在检测主用户传输的非循环信号的频谱占用情况。具体而言,我们提出了一种基于深度学习的频谱感知方法,该方法使用增强协方差矩阵感知卷积神经网络(CNN)。我们方法的核心创新在于采用增强样本协方差矩阵,它整合了标准协方差矩阵和互补协方差矩阵,从而充分利用非循环信号的统计特性。通过将增强样本协方差矩阵输入到设计的CNN架构中,所提出的方法有效地从底层数据结构中学习判别模式,而无需严格的模型约束。同时,我们的方法无需严格的模型假设,并通过充分利用非循环信号特征显著提高了检测性能。各种实验结果表明,与现有的基准方法相比,所提出的方法具有显著的性能提升和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/4a6ba0d27bfe/sensors-25-04791-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/71cc4ea8baf8/sensors-25-04791-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/17b3c9094b27/sensors-25-04791-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/216adf309568/sensors-25-04791-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/e51716a41722/sensors-25-04791-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/64e469b01628/sensors-25-04791-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/998eeacc9846/sensors-25-04791-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/f962817cd385/sensors-25-04791-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/d94a39624303/sensors-25-04791-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/e503060f1ec9/sensors-25-04791-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/06bbe8168ba5/sensors-25-04791-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/79ab3be5ffbb/sensors-25-04791-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/724a59c93e37/sensors-25-04791-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/b9510f477d6b/sensors-25-04791-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/d3dec367592b/sensors-25-04791-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/2f8a287eb7cb/sensors-25-04791-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/e1c1e57cd53b/sensors-25-04791-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/cd610cd6c7c7/sensors-25-04791-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/4a6ba0d27bfe/sensors-25-04791-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/71cc4ea8baf8/sensors-25-04791-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/17b3c9094b27/sensors-25-04791-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/216adf309568/sensors-25-04791-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/e51716a41722/sensors-25-04791-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/64e469b01628/sensors-25-04791-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/998eeacc9846/sensors-25-04791-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/f962817cd385/sensors-25-04791-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/d94a39624303/sensors-25-04791-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/e503060f1ec9/sensors-25-04791-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/06bbe8168ba5/sensors-25-04791-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/79ab3be5ffbb/sensors-25-04791-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/724a59c93e37/sensors-25-04791-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/b9510f477d6b/sensors-25-04791-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/d3dec367592b/sensors-25-04791-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/2f8a287eb7cb/sensors-25-04791-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/e1c1e57cd53b/sensors-25-04791-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/cd610cd6c7c7/sensors-25-04791-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f32/12349617/4a6ba0d27bfe/sensors-25-04791-g018.jpg

相似文献

[1]
Spectrum Sensing for Noncircular Signals Using Augmented Covariance-Matrix-Aware Deep Convolutional Neural Network.

Sensors (Basel). 2025-8-4

[2]
A hybrid model for detecting motion artifacts in ballistocardiogram signals.

Biomed Eng Online. 2025-7-23

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
DDoS classification of network traffic in software defined networking SDN using a hybrid convolutional and gated recurrent neural network.

Sci Rep. 2025-8-9

[5]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[6]
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture.

Comput Biol Med. 2024-9

[7]
Classification of maize seed hyperspectral images based on variable-depth convolutional kernels.

Front Plant Sci. 2025-6-6

[8]
Gramian Angular Field and Convolutional Neural Networks for Real-Time Multiband Spectrum Sensing in Cognitive Radio Networks.

Sensors (Basel). 2025-6-6

[9]
Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.

Comput Biol Med. 2024-8

[10]
Prescription of Controlled Substances: Benefits and Risks

2025-1

本文引用的文献

[1]
Deep learning.

Nature. 2015-5-28

[2]
A fast learning algorithm for deep belief nets.

Neural Comput. 2006-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索