Suppr超能文献

基于固化动力学的碳纤维增强塑料模压成型以实现快速低成本制造

Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing.

作者信息

Wu Xintong, Zhang Ming, Liu Zhongling, Fu Xin, Liu Haonan, Zhang Yuchen, Yang Xiaobo

机构信息

School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China.

Nanchang Jardine Advanced Composite Material Co., Ltd., Nanchang 330029, China.

出版信息

Polymers (Basel). 2025 Aug 6;17(15):2154. doi: 10.3390/polym17152154.

Abstract

Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal-exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun-Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method's reliability and its significance for improving production efficiency.

摘要

碳纤维增强聚合物(CFRP)复合材料因其优异的强度重量比和可定制性能而在航空航天领域得到广泛应用。然而,这些性能严重依赖于CFRP的固化周期。通常采用的制造商推荐固化周期(MRCC)是为适应最保守条件而设计的,其固化时间长且能耗高。为克服这些限制,本研究提出一种高效且适应性强的方法来确定最佳固化周期。通过使用差示扫描量热法(DSC)进行反应动力学分析和流变学测量,表征了不同加热速率对树脂动态和等温放热行为的影响。将反应体系的活化能代入改进的Sun-Gang模型,并使用粒子群优化算法估计参数。基于树脂的固化动力学行为,进行了CFRP压缩成型工艺正交实验。一个结合强度、能耗和周期时间的加权评分系统能够对优化方案进行多维度评估。将这种固化周期优化方法应用于一种商用环氧树脂,在满足一般产品性能要求的同时,效率提高了247.22%,能耗降低了35.7%。这些结果证实了该方法的可靠性及其对提高生产效率的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb29/12349691/c8d5e607efee/polymers-17-02154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验