使用CT成像的肺癌病理分级和预后评估深度学习模型:基于国家肺癌筛查试验(NLST)及外部验证队列的研究

Deep Learning Model for Pathological Grading and Prognostic Assessment of Lung Cancer Using CT Imaging: A Study on NLST and External Validation Cohorts.

作者信息

Yang Runhuang, Li Weiming, Yu Siqi, Wu Zhiyuan, Zhang Haiping, Liu Xiangtong, Tao Lixin, Li Xia, Huang Jian, Guo Xiuhua

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China (R.Y., W.L., S.Y., H.Z., X.L., L.T., X.G.); Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China (R.Y., W.L., S.Y., H.Z., X.L., L.T., X.G.).

Harvard T. H. Chan School of Public Health, Boston, Massachusetts (Z.W.).

出版信息

Acad Radiol. 2025 Jan;32(1):533-542. doi: 10.1016/j.acra.2024.08.028. Epub 2024 Sep 17.

Abstract

RATIONALE AND OBJECTIVES

To develop and validate a deep learning model for automated pathological grading and prognostic assessment of lung cancer using CT imaging, thereby providing surgeons with a non-invasive tool to guide surgical planning.

MATERIAL AND METHODS

This study utilized 572 cases from the National Lung Screening Trial cohort, dividing them randomly into training (461 cases) and internal validation (111 cases) sets in an 8:2 ratio. Additionally, 224 cases from four cohorts obtained from the Cancer Imaging Archive, all diagnosed with non-small cell lung cancer, were included for external validation. The deep learning model, built on the MobileNetV3 architecture, was assessed in both internal and external validation sets using metrics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The model's prognostic value was further analyzed using Cox proportional hazards models.

RESULTS

The model achieved high accuracy, sensitivity, specificity, and AUC in the internal validation set (accuracy: 0.888, macro AUC: 0.968, macro sensitivity: 0.798, macro specificity: 0.956). External validation demonstrated comparable performance (accuracy: 0.807, macro AUC: 0.920, macro sensitivity: 0.799, macro specificity: 0.896). The model's predicted signatures correlated significantly with patient mortality and provided valuable insights for prognostic assessment (adjusted HR 2.016 [95% CI: 1.010, 4.022]).

CONCLUSIONS

This study successfully developed and validated a deep learning model for the preoperative grading of lung cancer pathology. The model's accurate predictions could serve as a useful adjunct in treatment planning for lung cancer patients, enabling more effective and customized interventions to improve patient outcomes.

摘要

原理与目的

开发并验证一种用于利用CT成像对肺癌进行自动病理分级和预后评估的深度学习模型,从而为外科医生提供一种非侵入性工具以指导手术规划。

材料与方法

本研究使用了来自国家肺癌筛查试验队列的572例病例,以8:2的比例将它们随机分为训练集(461例)和内部验证集(111例)。此外,还纳入了从癌症影像存档库获得的四个队列中的224例病例,所有病例均被诊断为非小细胞肺癌,用于外部验证。基于MobileNetV3架构构建的深度学习模型,在内部和外部验证集中使用准确率、灵敏度、特异性和受试者操作特征曲线下面积(AUC)等指标进行评估。使用Cox比例风险模型进一步分析该模型的预后价值。

结果

该模型在内部验证集中实现了较高的准确率、灵敏度、特异性和AUC(准确率:0.888,宏AUC:0.968,宏灵敏度:0.798,宏特异性:0.956)。外部验证显示出可比的性能(准确率:0.807,宏AUC:0.920,宏灵敏度:0.799,宏特异性:0.896)。该模型的预测特征与患者死亡率显著相关,并为预后评估提供了有价值的见解(调整后HR 2.016 [95% CI:1.010,4.022])。

结论

本研究成功开发并验证了一种用于肺癌病理术前分级的深度学习模型。该模型的准确预测可作为肺癌患者治疗规划中的有用辅助手段,实现更有效和个性化的干预措施以改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索