文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全身免疫炎症生物标志物联合CRP-白蛋白-淋巴细胞指数预测腰椎后路融合术后手术部位感染:一项使用机器学习的回顾性研究

Systemic immune-inflammatory biomarkers combined with the CRP-albumin-lymphocyte index predict surgical site infection following posterior lumbar spinal fusion: a retrospective study using machine learning.

作者信息

Pang Zixiang, Liang Jiawei, Chen Jiayi, Ou Yangqin, Wu Qinmian, Huang Shengsheng, Huang Shengbin, Chen Yuanming

机构信息

Department Orthopedics Ward 3 (Spine and Osteopathy Surgery), Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.

Department of Spinal and Bone Disease Surgery, Sixth Affiliated Hospital of Guangxi Medical University, Yulin, Guangxi, China.

出版信息

Front Med (Lausanne). 2025 Jul 30;12:1590248. doi: 10.3389/fmed.2025.1590248. eCollection 2025.


DOI:10.3389/fmed.2025.1590248
PMID:40809418
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12343696/
Abstract

OBJECTIVES: Emerging systemic immune-inflammatory biomarkers demonstrate potential for predicting postoperative complications. This study develops machine learning models to assess the combined predictive value of Aggregate Index of Systemic Inflammation (AISI), Systemic Immune-Inflammation Index (SII), CRP-Albumin-Lymphocyte (CALLY) index and Subcutaneous Lumbar Spine Index (SLSI) for surgical site infection (SSI) following posterior lumbar spinal fusion. METHODS: This retrospective study analyzed 2,921 patients undergoing posterior lumbar spinal fusion at two tertiary hospitals in Guangxi (August 2017-January 2025). Data were partitioned into training (70%) and validation (30%) groups. Feature selection via univariate regression analysis identified predictive variables, followed by model development using ten machine learning algorithms: logistic regression (LR), support vector machine (SVM), random forest (RF), gradient boosting machine (GBM), XGBoost, neural network, K-nearest neighbors(KNN), AdaBoost, LightGBM, and CatBoost. Hyperparameters were optimized with 10-fold cross-validation. The top seven performing models (assessed by AUC, accuracy, sensitivity, specificity, precision, and F1 scores) were integrated into a dynamic nomogram. Internal validation employed ROC analysis and calibration curves, while Shapley Additive Explanations (SHAP) values interpreted feature importance in the optimal model. RESULTS: Among 2,921 screened patients, 1,272 met inclusion criteria. Consensus feature selection across the seven top-performing ML algorithms identified AISI, SII, CALLY and SLSI as independent predictors of SSI. The derived nomogram demonstrated exceptional discrimination (training groups AUC = 0.966; C-index = 0.993, 95% CI 0.984-0.995) and excellent calibration. Additionally, the SHAP method emphasized the significance of AISI, SII, CALLY and SLSI as independent predictors influencing the machine learning model's predictions. CONCLUSION: The AISI, SII, CALLY and SLSI emerged as independent predictors of SSI following posterior lumbar spinal fusion. Our machine learning-derived nomogram demonstrated high discriminative accuracy and clinical applicability through dynamic risk stratification. Leveraging the SHAP methodology enhances model interpretability, thereby empowering healthcare providers to proactively mitigate SSI occurrences and enhance overall patient outcomes.

摘要

目的:新兴的全身免疫炎症生物标志物显示出预测术后并发症的潜力。本研究开发机器学习模型,以评估全身炎症综合指数(AISI)、全身免疫炎症指数(SII)、CRP-白蛋白-淋巴细胞(CALLY)指数和腰椎皮下指数(SLSI)对腰椎后路融合术后手术部位感染(SSI)的联合预测价值。 方法:这项回顾性研究分析了广西两家三级医院2921例接受腰椎后路融合术的患者(2017年8月至2025年1月)。数据被分为训练组(70%)和验证组(30%)。通过单变量回归分析进行特征选择,确定预测变量,然后使用十种机器学习算法开发模型:逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、梯度提升机(GBM)、XGBoost、神经网络、K近邻(KNN)、AdaBoost、LightGBM和CatBoost。使用10折交叉验证对超参数进行优化。将表现最佳的前七个模型(通过AUC、准确率、敏感性、特异性、精确率和F1分数评估)整合到动态列线图中。内部验证采用ROC分析和校准曲线,而Shapley加性解释(SHAP)值解释了最佳模型中的特征重要性。 结果:在2921例筛查患者中,1272例符合纳入标准。在七个表现最佳的机器学习算法中进行的共识特征选择确定AISI、SII、CALLY和SLSI为SSI的独立预测因子。所推导的列线图显示出出色的辨别力(训练组AUC = 0.966;C指数 = 0.993,95%CI 0.984 - 0.995)和良好的校准。此外,SHAP方法强调了AISI、SII、CALLY和SLSI作为影响机器学习模型预测的独立预测因子的重要性。 结论:AISI、SII、CALLY和SLSI是腰椎后路融合术后SSI的独立预测因子。我们通过机器学习得出的列线图通过动态风险分层显示出高辨别准确性和临床适用性。利用SHAP方法增强了模型的可解释性,从而使医疗保健提供者能够主动减少SSI的发生并改善患者的总体预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/1edc5aee61fd/fmed-12-1590248-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/6bb2a0f845c6/fmed-12-1590248-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/4fb90a91f83a/fmed-12-1590248-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/88ad3de60aed/fmed-12-1590248-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/29f0d9c98034/fmed-12-1590248-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/7d9da6518ebd/fmed-12-1590248-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/1edc5aee61fd/fmed-12-1590248-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/6bb2a0f845c6/fmed-12-1590248-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/4fb90a91f83a/fmed-12-1590248-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/88ad3de60aed/fmed-12-1590248-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/29f0d9c98034/fmed-12-1590248-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/7d9da6518ebd/fmed-12-1590248-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/12343696/1edc5aee61fd/fmed-12-1590248-g006.jpg

相似文献

[1]
Systemic immune-inflammatory biomarkers combined with the CRP-albumin-lymphocyte index predict surgical site infection following posterior lumbar spinal fusion: a retrospective study using machine learning.

Front Med (Lausanne). 2025-7-30

[2]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[3]
Artificial Intelligence-Based prediction model for surgical site infection in metastatic spinal disease: a multicenter development and validation study.

Int J Surg. 2025-6-27

[4]
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.

BMC Infect Dis. 2025-7-1

[5]
Development of machine learning model for predicting prolonged operation time in lumbar stenosis undergoing posterior lumbar interbody fusion: a multicenter study.

Spine J. 2025-3

[6]
Establishment of predictive models for postoperative delirium in elderly patients after knee/hip surgery based on total bilirubin concentration: machine learning algorithms.

BMC Anesthesiol. 2025-7-30

[7]
Clinical prediction of intravenous immunoglobulin-resistant Kawasaki disease based on interpretable Transformer model.

PLoS One. 2025-7-9

[8]
Optimized feature selection and advanced machine learning for stroke risk prediction in revascularized coronary artery disease patients.

BMC Med Inform Decis Mak. 2025-7-24

[9]
Interpretable machine learning model for identification and risk factor of premature rupture of membranes (PROM) and its association with nutritional inflammatory index: a retrospective study.

Front Med (Lausanne). 2025-6-18

[10]
Mortality Risk Prediction in Patients With Antimelanoma Differentiation-Associated, Gene 5 Antibody-Positive, Dermatomyositis-Associated Interstitial Lung Disease: Algorithm Development and Validation.

J Med Internet Res. 2025-2-5

本文引用的文献

[1]
Machine learning models for pancreatic cancer diagnosis based on microbiome markers from serum extracellular vesicles.

Sci Rep. 2025-3-31

[2]
Explainable SHAP-XGBoost models for pressure injuries among patients requiring with mechanical ventilation in intensive care unit.

Sci Rep. 2025-3-22

[3]
Exploring the correlations between six serological inflammatory markers and different stages of type 2 diabetic retinopathy.

Sci Rep. 2025-1-10

[4]
Imperfect wound healing sets the stage for chronic diseases.

Science. 2024-12-6

[5]
Lymphopenia in sepsis: a narrative review.

Crit Care. 2024-9-20

[6]
Associations of C-reactive protein-albumin-lymphocyte (CALLY) index with cardiorenal syndrome: Insights from a population-based study.

Heliyon. 2024-9-3

[7]
SHAP based predictive modeling for 1 year all-cause readmission risk in elderly heart failure patients: feature selection and model interpretation.

Sci Rep. 2024-7-31

[8]
Explainable machine learning for predicting 30-day readmission in acute heart failure patients.

iScience. 2024-6-15

[9]
A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease.

Artif Intell Med. 2024-8

[10]
Association of modic changes and postoperative surgical site infection after posterior lumbar spinal fusion.

Eur Spine J. 2024-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索