Suppr超能文献

基于 SHAP 的预测模型对老年心力衰竭患者 1 年全因再入院风险的预测:特征选择和模型解释。

SHAP based predictive modeling for 1 year all-cause readmission risk in elderly heart failure patients: feature selection and model interpretation.

机构信息

Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Nanchong, 637000, Sichuan Province, People's Republic of China.

Hubei Polytechnic University, Huangshi, 435003, Hubei, People's Republic of China.

出版信息

Sci Rep. 2024 Jul 31;14(1):17728. doi: 10.1038/s41598-024-67844-7.

Abstract

Heart failure (HF) is a significant global public health concern with a high readmission rate, posing a serious threat to the health of the elderly population. While several studies have used machine learning (ML) to develop all-cause readmission risk prediction models for elderly patients with HF, few have integrated ML-selected features with those chosen by human experts to assess HF patients readmission. A retrospective analysis of 8396 elderly HF patients hospitalized at the Affiliated Hospital of North Sichuan Medical College from January 1, 2018 to December 31, 2021 was conducted. Variables selected by XGBoost, LASSO regression, and random forest constituted the machine group, while the human expert group comprised variables chosen by two experienced cardiovascular professors. The variables selected by both groups were combined to form a human-machine collaboration group. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP) method was used to elucidate the importance of each predictive feature, explain the impact of individual features on the model, and provide visual representation. A total of 73 features were included for model development. The human-machine collaboration model, utilizing CatBoost, achieved an AUC of 0.83617, an F1-score of 0.73521, and a Brier score of 0.16536 on the validation set. This model demonstrated superior predictive performance compared to those created solely by human experts or machine. The SHAP plot was then used to visually display the feature analysis of the human-machine collaboration model, revealing HGB, NT-proBNP, smoking history, NYHA classification, and LVEF as the 5 most important features. This study indicate that the human-machine collaboration model outperforms those relying solely on human expert selection or machine algorithm at predicting all-cause readmission in elderly HF patients. The application of the SHAP method enhanced the interpretability of the model outcomes, aiding clinicians in accurately pinpointing risk factors associated with HF readmission. This advancement enables the formulation of tailored treatment strategies, offering a more personalized approach to patient care.

摘要

心力衰竭(HF)是一个重大的全球公共卫生问题,具有高再入院率,对老年人群的健康构成严重威胁。虽然已经有几项研究使用机器学习(ML)为老年 HF 患者开发全因再入院风险预测模型,但很少有人将 ML 选择的特征与人类专家选择的特征结合起来评估 HF 患者的再入院情况。对 2018 年 1 月 1 日至 2021 年 12 月 31 日期间在川北医学院附属医院住院的 8396 名老年 HF 患者进行回顾性分析。XGBoost、LASSO 回归和随机森林选择的变量构成了机器组,而由两位经验丰富的心血管教授选择的变量构成了人类专家组。两组选择的变量组合成人机协作组。使用接收者操作特征曲线下面积(AUC)评估模型性能。使用 Shapley 加法解释(SHAP)方法阐明每个预测特征的重要性,解释单个特征对模型的影响,并提供可视化表示。总共纳入 73 个特征用于模型开发。利用 CatBoost 的人机协作模型在验证集上的 AUC 为 0.83617、F1 得分为 0.73521 和 Brier 得分为 0.16536。该模型的预测性能优于仅由人类专家或机器创建的模型。然后使用 SHAP 图直观地显示人机协作模型的特征分析,显示 HGB、NT-proBNP、吸烟史、NYHA 分类和 LVEF 是 5 个最重要的特征。这项研究表明,人机协作模型在预测老年 HF 患者全因再入院方面优于仅依赖人类专家选择或机器算法的模型。SHAP 方法的应用增强了模型结果的可解释性,帮助临床医生准确确定与 HF 再入院相关的风险因素。这一进展使得能够制定量身定制的治疗策略,为患者提供更个性化的护理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d762/11291677/5d33a09f7dca/41598_2024_67844_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验