使用MAP-HR进行自动机器学习分析,以量化患者样本中的同源重组灶。

Automated machine learning profiling with MAP-HR for quantifying homologous recombination foci in patient samples.

作者信息

Ozmen Tugba Y, Rames Matthew J, Zangirolani Gabriel M, Ozmen Furkan, Jeong Kangjin, Frankston Connor, Mills Gordon B

机构信息

Division of Oncological Sciences Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, United States.

Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97201, United States.

出版信息

NAR Cancer. 2025 Aug 11;7(3):zcaf025. doi: 10.1093/narcan/zcaf025. eCollection 2025 Sep.

Abstract

Accurate visualization and quantification of homologous recombination (HR)-associated foci in readily available patient samples are critical for identifying patients with HR deficiency (HRD) when they present for care to guide polyADP ribose polymerase (PARP) inhibitors (PARPi) or platinum-based therapies. Immunofluorescence (IF) assays have the potential to accurately visualize DNA repair processes as punctate foci within the nucleus. To ensure precise HRD assessment, we developed MAP-HR, (achine-learning ssisted rofiling of omologous ecombination), a scalable machine-learning (ML) analysis platform to enable effective patient triage and therapeutic decision-making. This workflow integrates high-resolution four-channel IF imaging and automated analysis of Geminin (cell cycle states), RAD51 foci (HR repair), γH2AX foci (double strand breaks) and DAPI (nuclear localization) in both cultured cell lines and in a single formalin-fixed, paraffin-embedded (FFPE) patient samples. Using a spinning disk confocal microscope, we optimized imaging parameters to improve resolution and signal-to-noise ratio. Our MAP-HR pipeline uses nested nuclei and segmentation of foci to analyze the HR status of each cell, unlike competing bulk or single-foci marker assays, allowing evaluation of HR functional heterogeneity across and within patient biopsies. This approach facilitates robust comparisons of HR and foci-based processes across diverse cell populations and patient tissues, enabling scalable, translational research.

摘要

在易于获取的患者样本中准确可视化和定量同源重组(HR)相关病灶,对于识别出现HR缺陷(HRD)的患者至关重要,这些患者在接受治疗时可指导聚ADP核糖聚合酶(PARP)抑制剂(PARPi)或铂类疗法的使用。免疫荧光(IF)检测有潜力将DNA修复过程准确可视化为细胞核内的点状病灶。为确保精确的HRD评估,我们开发了MAP-HR(同源重组的机器学习辅助分析),这是一个可扩展的机器学习(ML)分析平台,以实现有效的患者分类和治疗决策。该工作流程整合了高分辨率四通道IF成像以及对Geminin(细胞周期状态)、RAD51病灶(HR修复)、γH2AX病灶(双链断裂)和DAPI(核定位)在培养细胞系和单个福尔马林固定、石蜡包埋(FFPE)患者样本中的自动分析。使用旋转盘共聚焦显微镜,我们优化了成像参数以提高分辨率和信噪比。与竞争性的整体或单病灶标记检测不同,我们的MAP-HR流程使用嵌套细胞核和病灶分割来分析每个细胞的HR状态,从而能够评估患者活检样本之间和内部的HR功能异质性。这种方法有助于在不同细胞群体和患者组织之间对基于HR和病灶的过程进行有力比较,从而实现可扩展的转化研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca07/12342941/1406209c4b8f/zcaf025figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索