Massai Leonardo, Hetényi Bence, Mergenthaler Matthias, Schupp Felix J, Sommer Lisa, Paredes Stephan, Bedell Stephen W, Harvey-Collard Patrick, Salis Gian, Fuhrer Andreas, Hendrickx Nico W
IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
IBM Quantum, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 USA.
Commun Mater. 2024;5(1):151. doi: 10.1038/s43246-024-00563-8. Epub 2024 Aug 14.
Hole spins in Ge/SiGe heterostructures have emerged as an interesting qubit platform with favourable properties such as fast electrical control and noise-resilient operation at sweet spots. However, commonly observed gate-induced electrostatic disorder, drifts, and hysteresis hinder reproducible tune-up of SiGe-based quantum dot arrays. Here, we study Hall bar and quantum dot devices fabricated on Ge/SiGe heterostructures and present a consistent model for the origin of gate hysteresis and its impact on transport metrics and charge noise. As we push the accumulation voltages more negative, we observe non-monotonous changes in the low-density transport metrics, attributed to the induced gradual filling of a spatially varying density of charge traps at the SiGe-oxide interface. With each gate voltage push, we find local activation of a transient low-frequency charge noise component that completely vanishes again after 30 hours. Our results highlight the resilience of the SiGe material platform to interface-trap-induced disorder and noise and pave the way for reproducible tuning of larger multi-dot systems.
锗/硅锗异质结构中的空穴自旋已成为一个有趣的量子比特平台,具有诸如快速电控制和在最佳工作点处抗噪声运行等有利特性。然而,常见的栅极诱导静电无序、漂移和滞后现象阻碍了基于硅锗的量子点阵列的可重复调谐。在此,我们研究了在锗/硅锗异质结构上制造的霍尔条形和量子点器件,并提出了一个关于栅极滞后起源及其对输运指标和电荷噪声影响的一致模型。当我们将积累电压推得更负时,我们观察到低密度输运指标的非单调变化,这归因于在硅锗-氧化物界面处空间变化的电荷陷阱密度的逐渐填充。每次栅极电压推动时,我们发现一个瞬态低频电荷噪声分量的局部激活,该分量在30小时后又完全消失。我们的结果突出了硅锗材料平台对界面陷阱诱导的无序和噪声的抗性,并为更大的多量子点系统的可重复调谐铺平了道路。