Suppr超能文献

用于脑功能连接生成的图正则化流形感知条件瓦瑟斯坦生成对抗网络

Graph-Regularized Manifold-Aware Conditional Wasserstein GAN for Brain Functional Connectivity Generation.

作者信息

Tan Yee-Fan, Noman Fuad, Phan Raphaël C-W, Ombao Hernando, Ting Chee-Ming

机构信息

School of Information Technology, Monash University, Subang Jaya, Malaysia.

Biostatistics Group, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia.

出版信息

Hum Brain Mapp. 2025 Aug 15;46(12):e70322. doi: 10.1002/hbm.70322.

Abstract

Common measures of brain functional connectivity (FC) including covariance and correlation matrices are symmetry-positive definite (SPD) matrices residing on a cone-shaped Riemannian manifold. Despite its remarkable success for Euclidean-valued data generation, the use of standard generative adversarial networks (GANs) to generate manifold-valued FC data neglects its inherent SPD structure and hence the inter-relatedness of edges in real FC. We propose a novel graph-regularized manifold-aware conditional Wasserstein GAN (GR-SPD-GAN) for FC data generation on the SPD manifold that can preserve the global FC structure. Specifically, we optimize a generalized Wasserstein distance between the real and generated SPD data under adversarial training, conditioned on the class labels. The resulting generator can synthesize new SPD-valued FC matrices associated with different classes of brain networks, for example, brain disorder or healthy control. Furthermore, we introduce additional population graph-based regularization terms on both the SPD manifold and its tangent space to encourage the generator to respect the inter-subject similarity of FC patterns in the real data. This also helps in avoiding mode collapse and produces more stable GAN training. Evaluated on resting-state functional magnetic resonance imaging (fMRI) data of major depressive disorder (MDD), qualitative and quantitative results show that the proposed GR-SPD-GAN clearly outperforms several state-of-the-art GANs in generating more realistic fMRI-based FC samples. When applied to FC data augmentation for MDD identification, classification models trained on augmented data generated by our approach achieved the largest margin of improvement in classification accuracy among the competing GANs over baselines without data augmentation.

摘要

脑功能连接(FC)的常见测量方法,包括协方差矩阵和相关矩阵,都是驻留在锥形黎曼流形上的对称正定(SPD)矩阵。尽管标准生成对抗网络(GAN)在生成欧几里得值数据方面取得了显著成功,但使用它来生成流形值的FC数据却忽略了其固有的SPD结构,从而忽略了真实FC中边的相互关联性。我们提出了一种新颖的图正则化流形感知条件瓦瑟斯坦GAN(GR-SPD-GAN),用于在SPD流形上生成FC数据,该方法可以保留全局FC结构。具体而言,我们在对抗训练下优化真实SPD数据和生成的SPD数据之间的广义瓦瑟斯坦距离,并以类别标签为条件。由此产生的生成器可以合成与不同类别的脑网络相关的新的SPD值FC矩阵,例如脑疾病或健康对照。此外,我们在SPD流形及其切空间上引入了基于群体图的额外正则化项,以鼓励生成器尊重真实数据中FC模式的个体间相似性。这也有助于避免模式崩溃,并产生更稳定的GAN训练。在对重度抑郁症(MDD)的静息态功能磁共振成像(fMRI)数据进行评估时,定性和定量结果表明,所提出的GR-SPD-GAN在生成更逼真的基于fMRI的FC样本方面明显优于几种先进的GAN。当将其应用于MDD识别的FC数据增强时,在没有数据增强的基线之上,在由我们的方法生成的增强数据上训练的分类模型在竞争GAN中实现了分类准确率的最大提升幅度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6991/12358810/a68a438beef8/HBM-46-e70322-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验