Suppr超能文献

用于帕金森病行为分析自动化的深度实验室切割

DeepLabCut to Automate Behavioral Analysis of Parkinsonism.

作者信息

Rangoonwala Nabeel, Le Khoi, Peshattiwar Vaibhavi, Swain Caroline, Pokharel Dipesh, White Tatiana, Subramanian Thyagarajan, Venkiteswaran Kala

机构信息

Neurology, University of Toledo, Toledo, Ohio, USA.

出版信息

AI Neurosci. 2025 Mar;1(1):54-59. doi: 10.1089/ains.2024.0008. Epub 2025 Feb 21.

Abstract

BACKGROUND

Behavioral assessment of parkinsonism often relies on human rater evaluation. However, human biases and variability necessitate larger sample sizes to maintain validity, leading to extensive video analysis and limiting researchers' time. Recent artificial intelligence (AI) and machine learning (ML) advancements enable efficient data analysis, offering unbiased decision-making and consistency across scenarios, bridging inter-rater differences. While not fully automating jobs, AI/ML boosts productivity when properly trained with diverse data. This study aims to show that AI/ML can assist in the analysis of rat parkinsonian behavioral studies to reduce labor dependence while still maintaining accuracy.

METHODS

DeepLabCut (DLC), an animal pose estimation software, was used to analyze motor behavior in video recordings of parkinsonian Sprague Dawley rats while they performed the stepping test ( = 24). The stepping test involves observing the animal's locomotor function and motor coordination while it is guided across a flat surface. The amount of adjusting steps was counted over the 1-meter distance. Twenty-eight videos ( = 24 + 4 training videos) were fed into DLC, which then selected 20 frames per video using a k-nearest neighbors' algorithm and subsequently labeled to train the model. This one-time training process took 3 h. The output, which has the tracked coordinates of the forepaw being tested, was fed into a script in R to plot Δ y between consecutive frames. The positive peaks were counted as one step, and large negative peaks were counted as a reset or side switch. The counts for each video were then compared with an independent manual rater.

RESULTS

There was good absolute agreement between the two scoring methods, using the two-way random effect model, kappa = 0.9, < 0.0001. It takes 10-15 min to go through each video manually, but the DLC-assisted scoring resulted in 3-4 min per video. These results show that DLC-assisted scoring produced results that could be on par with manual scoring. In addition, this shows a feasible avenue to integrate AI/ML in parkinsonian behavioral studies to reduce the workload for analysis and eventually, fully automating such tasks.

摘要

背景

帕金森病的行为评估通常依赖于人工评分。然而,人为偏差和变异性需要更大的样本量来维持有效性,这导致了大量的视频分析工作,并限制了研究人员的时间。最近人工智能(AI)和机器学习(ML)的进展实现了高效的数据分析,提供了无偏差的决策,并在不同场景中保持一致性,弥合了评分者之间的差异。虽然不能完全自动化工作,但在使用多样数据进行适当训练时,AI/ML可提高生产力。本研究旨在表明,AI/ML可协助分析大鼠帕金森病行为研究,以减少对人力的依赖,同时仍保持准确性。

方法

使用动物姿态估计软件DeepLabCut(DLC)分析帕金森病斯普拉格-道利大鼠在进行步测(n = 24)时的视频记录中的运动行为。步测包括观察动物在被引导穿过平坦表面时的运动功能和运动协调性。在1米的距离内计算调整步数。将28个视频(n = 24 + 4个训练视频)输入DLC,然后DLC使用k近邻算法为每个视频选择20帧,随后进行标记以训练模型。这个一次性训练过程耗时3小时。将输出结果(即被测试前爪的跟踪坐标)输入R语言脚本中,以绘制连续帧之间的Δy。正峰值计为一步,大的负峰值计为重置或侧转。然后将每个视频的计数结果与独立的人工评分者进行比较。

结果

使用双向随机效应模型,两种评分方法之间有良好的绝对一致性,kappa = 0.9,P < 0.0001。人工查看每个视频需要10 - 15分钟,但DLC辅助评分每个视频只需3 - 4分钟。这些结果表明,DLC辅助评分产生的结果与人工评分相当。此外,这表明在帕金森病行为研究中整合AI/ML以减少分析工作量并最终完全自动化此类任务是一条可行的途径。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验