Uryga Agnieszka, Najdek Monika, Urbański Piotr, Kasprowicz Magdalena, Buchner Teodor
Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
Clinical Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
Eur J Appl Physiol. 2025 Aug 18. doi: 10.1007/s00421-025-05933-9.
Controlled breathing is a hemodynamic maneuver known to influence both baroreflex and chemoreflex sensitivity. This study investigated the impact of respiratory-driven oscillations on the relationship between cerebral autoregulation and autonomic nervous system (ANS) activity.
Sixty-one volunteers (median age: 23 years) underwent noninvasive measurements of arterial blood pressure (ABP), cerebral blood velocity (CBv), end-tidal CO (EtCO), and respiratory rate during spontaneous breathing and during three 5-min sessions of controlled breathing at 6, 10, and 15 bpm. Cerebral autoregulation was assessed using transfer function analysis by calculating phase shift (PS) and gain between ABP and CBv in the very low frequency (VLF; 0.02-0.07 Hz) and breathing frequency (BF; [0.1, 0.17, 0.25] ± 0.02 Hz) ranges. ANS activity was assessed using baroreflex sensitivity (xBRS), heart rate variability (HRV) metrics in time and frequency domains, and entropy-based parameters. Cardiovascular coupling was assessed using the joint symbolic dynamics of beat-to-beat pulse interval and systolic blood pressure.
Increasing respiratory rate led to decreased EtCO (p < 0.001), diminished cardiovascular coupling (p < 0.01), and reduced systemic ABP control, as indicated by lower normalized low-frequency HRV and xBRS (both p < 0.001). A linear mixed-effects model, adjusted for EtCO and respiratory rate, showed that PS at VLF and BF was modulated by ANS metrics, whereas gain was mainly affected by respiratory parameters, with a nonsignificant contribution from ANS.
Higher respiratory rates reduced cardiovascular coupling, diminished ANS activity, and modified its interaction with cerebral autoregulation. Respiratory parameters should be considered when assessing ANS-cerebral autoregulation relationship.
控制性呼吸是一种已知会影响压力反射和化学反射敏感性的血流动力学操作。本研究调查了呼吸驱动振荡对脑自动调节与自主神经系统(ANS)活动之间关系的影响。
61名志愿者(年龄中位数:23岁)在自主呼吸期间以及在6、10和15次/分钟的三次5分钟控制性呼吸期间,接受了动脉血压(ABP)、脑血流速度(CBv)、呼气末二氧化碳(EtCO)和呼吸频率的无创测量。通过计算极低频(VLF;0.02 - 0.07Hz)和呼吸频率(BF;[0.1, 0.17, 0.25] ± 0.02Hz)范围内ABP与CBv之间的相移(PS)和增益,使用传递函数分析来评估脑自动调节。使用压力反射敏感性(xBRS)、时域和频域中的心率变异性(HRV)指标以及基于熵的参数来评估ANS活动。使用逐搏脉搏间期和收缩压的联合符号动力学来评估心血管耦合。
呼吸频率增加导致EtCO降低(p < 0.001)、心血管耦合减弱(p < 0.01)以及全身ABP控制降低,如较低的标准化低频HRV和xBRS所示(两者p < 0.001)。经EtCO和呼吸频率校正的线性混合效应模型表明,VLF和BF处的PS受ANS指标调节,而增益主要受呼吸参数影响,ANS的贡献不显著。
较高的呼吸频率降低了心血管耦合,减弱了ANS活动,并改变了其与脑自动调节的相互作用。在评估ANS与脑自动调节的关系时应考虑呼吸参数。