Van Roijen Elisabeth, Miller Sabbie A
Department of Civil and Environmental Engineering, University of California, Davis, CA, USA.
Nat Commun. 2025 Aug 18;16(1):7659. doi: 10.1038/s41467-025-62877-6.
There is a rising urgency to decarbonize plastic production given its high carbon footprint and rapid growth in demand. Here, we highlight pathways for carbon uptake and temporary storage (i.e., net-negative greenhouse gas emissions) for plastics on a global scale by 2050. We focus on bio-based plastics and consider potential market replacement, renewable energy integration, and waste management practices. Our analysis reveals that achieving net-negative emissions requires high levels of all three strategies. For example, reaching 60% bio-based plastics still requires 100% renewable energy and 90% recycling, while 40% recycling requires 90% bio-based plastics with 100% renewable energy. Maximizing all three variables could store up to 270 million metric tonnes of carbon dioxide equivalents by 2050. By 2030, annual emissions from plastics could be reduced by 58% compared to current levels by substituting 41% of petroleum-based plastics with bio-based alternatives, transitioning to 100% renewable energy, and recycling 27% of plastics at end-of-life.
鉴于塑料生产的高碳足迹和需求的快速增长,实现塑料生产脱碳的紧迫性日益凸显。在此,我们着重介绍到2050年在全球范围内实现塑料碳吸收和临时储存(即净负温室气体排放)的途径。我们聚焦于生物基塑料,并考虑潜在的市场替代、可再生能源整合及废物管理实践。我们的分析表明,要实现净负排放需要这三种策略都达到很高水平。例如,要达到60%的生物基塑料,仍需要100%的可再生能源和90%的回收率,而40%的回收率则需要90%的生物基塑料和100%的可再生能源。将这三个变量最大化,到2050年可封存多达2.7亿吨二氧化碳当量。到2030年,通过用生物基替代品替代41%的石油基塑料、过渡到100%的可再生能源以及在塑料使用寿命结束时回收27%的塑料,与当前水平相比,塑料的年排放量可减少58%。