Farhat Imrana, Rosolowski Maciej, Ahrens Katharina, Lienau Jasmin, Ahnert Peter, Pletz Mathias, Rohde Gernot, Rupp Jan, Witzenrath Martin, Scholz Markus
Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.
Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Infection. 2025 Aug 19. doi: 10.1007/s15010-025-02627-4.
COVID-19 continuously causes severe disease conditions and significant mortality. We evaluate whether easily accessible biomarkers can improve risk prediction of severe disease outcomes.
Our study analysed 426 COVID-19 patients collected by German CAPNETZ and PROGRESS study groups between 2020 and 2021. Troponin T high-sensitive (TnT-hs), procalcitonin (PCT), N-terminal pro brain natriuretic peptide, angiopoietin-2, copeptin, endothelin-1 (ET-1) and lipocalin-2 were measured at enrolment and related to 28d mortality/ICU admission endpoint. Logistic and relaxed LASSO regression were used to evaluate the added value of biomarkers compared to the CRB-65 score and to develop a combined risk prediction model for our endpoint.
Of the 426 COVID-19 patients, 64 (15%) reached the endpoint. Among individual biomarkers, ET-1 showed the highest predictive performance (AUC = 0.76, 95% CI: 0.70-0.82). CRB-65 alone had an AUC of 0.63 (95% CI: 0.56-0.70). Our machine learning method identified CRB-65 + ET-1 to be optimal for prediction performance and model sparsity (AUC = 0.77, 95% CI: 0.71-0.83). Decision curve analysis demonstrated its greater net benefit over CRB-65 across large range of risk thresholds. The generalizability of our non-COVID CAP model (CRB-65 + TnT-hs + PCT) to COVID-19 patients was also assessed, yielding an AUC of 0.67 (95% CI: 0.60-0.74) for our primary endpoint. For 28d mortality alone as endpoint, it performed remarkably well (AUC = 0.90, 95% CI: 0.85-0.95).
Combining the already established clinical CRB-65 score with ET-1 significantly improves risk prediction of intensive care requirement or death within 28 days in hospitalized COVID-19 patients.
新型冠状病毒肺炎(COVID-19)持续导致严重病情和显著死亡率。我们评估易于获取的生物标志物是否能改善严重疾病结局的风险预测。
我们的研究分析了德国CAPNETZ和PROGRESS研究组在2020年至2021年期间收集的426例COVID-19患者。在入组时测量高敏肌钙蛋白T(TnT-hs)、降钙素原(PCT)、N末端脑钠肽前体、血管生成素-2、 copeptin、内皮素-1(ET-1)和lipocalin-2,并将其与28天死亡率/入住重症监护病房终点相关联。使用逻辑回归和松弛套索回归评估生物标志物相对于CRB-65评分的附加值,并为我们的终点建立联合风险预测模型。
在426例COVID-19患者中,64例(15%)达到终点。在单个生物标志物中,ET-1显示出最高的预测性能(AUC = 0.76,95%CI:0.70-0.82)。单独的CRB-65的AUC为0.63(95%CI:0.56-0.70)。我们的机器学习方法确定CRB-65 + ET-1在预测性能和模型稀疏性方面是最优的(AUC = 0.77,95%CI:0.71-0.83)。决策曲线分析表明,在大范围的风险阈值内,其净效益优于CRB-65。还评估了我们的非COVID CAP模型(CRB-65 + TnT-hs + PCT)对COVID-19患者的可推广性,我们的主要终点的AUC为0.67(95%CI:0.60-0.74)。仅以28天死亡率作为终点时,其表现非常出色(AUC = 0.90,95%CI:0.85-0.95)。
将已建立的临床CRB-65评分与ET-1相结合,可显著改善住院COVID-19患者28天内重症监护需求或死亡的风险预测。