Suppr超能文献

使用具有对比度增强功能的卷积神经网络改善骨髓细胞学中的白细胞分类。

Improved leukocyte classification in bone marrow cytology using convolutional neural network with contrast enhancement.

作者信息

Mehmood Shahid, Shahzad Tariq, Zubair Muhammad, Khan Farman Matloob, Khan Muhammad Adnan, Ouahada Khmaies, Gandomi Amir H

机构信息

Department of Computer Science, Bahria University, Lahore, 54000, Pakistan.

Department of Computer Science, Riphah International University, Islamabad, Pakistan.

出版信息

Sci Rep. 2025 Aug 19;15(1):30466. doi: 10.1038/s41598-025-12207-z.

Abstract

Leukocytes or white blood cells (WBCs) are the main components of the immune system that protect the human body from various infections caused by viruses, bacteria, fungi, and other microorganisms. There are five major types of leukocytes: basophils, lymphocytes, eosinophils, monocytes, and neutrophils. The precise identification and enumeration of each variety of WBCs are essential for the diagnosis and management of various conditions, including infectious diseases, immune disorders, immunological deficiencies, leukemia, and so forth. The conventional method of examining bone marrow cells by hematologists and pathologists using microscopy is tedious, time-consuming, and prone to variability among observers. Hence, there is a demand for a rapid and precise WBCs classification model. The proposed framework is highly accurate for the classification of leukocytes. A large dataset of leukocyte images was used in this study for training and testing. We used transfer learning to speed up the training process empowered with Contrast Limited Adaptive Histogram Equalization (CLAHE) technique to improve image quality and classification accuracy. The initial accuracy of the model was 81%. After the application of the CLAHE technique, the proposed approach significantly improved overall accuracy from 81 to 96.5% (15.5% improvement), outcompeting the state-of-the-art methods for leukocyte classification. Image contrast enhancement techniques, particularly CLAHE, improve the convolution neural network (CNN) model's performance. The proposed model can significantly assist hematologists and pathologists in accurately identifying leukocytes, thereby aiding in the detection of blood disorders and enabling more effective treatment strategies.

摘要

白细胞或白血球(WBCs)是免疫系统的主要组成部分,可保护人体免受病毒、细菌、真菌和其他微生物引起的各种感染。白细胞主要有五种类型:嗜碱性粒细胞、淋巴细胞、嗜酸性粒细胞、单核细胞和中性粒细胞。准确识别和计数每种白细胞对于诊断和管理各种病症至关重要,这些病症包括传染病、免疫紊乱、免疫缺陷、白血病等等。血液学家和病理学家使用显微镜检查骨髓细胞的传统方法既繁琐又耗时,而且不同观察者之间容易出现差异。因此,需要一种快速且精确的白细胞分类模型。所提出的框架在白细胞分类方面具有很高的准确性。本研究使用了一个大型白细胞图像数据集进行训练和测试。我们使用迁移学习来加速训练过程,并采用对比度受限自适应直方图均衡化(CLAHE)技术来提高图像质量和分类准确性。该模型的初始准确率为81%。应用CLAHE技术后,所提出的方法显著提高了总体准确率,从81%提高到96.5%(提高了15.5%),超过了用于白细胞分类的现有最先进方法。图像对比度增强技术,特别是CLAHE,提高了卷积神经网络(CNN)模型的性能。所提出的模型可以显著帮助血液学家和病理学家准确识别白细胞,从而有助于检测血液疾病并制定更有效的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c08/12365091/9c672e3df6fa/41598_2025_12207_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验