Yu Fei, Thedford R Paxton, Tartaglia Thomas A, Sheth Sejal S, Freychet Guillaume, Tait William R T, Beaucage Peter A, Moore William L, Li Yuanzhi, Werner Jörg G, Thom-Levy Julia, Gruner Sol M, van Dover R Bruce, Wiesner Ulrich B
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
Nat Commun. 2025 Aug 19;16(1):7704. doi: 10.1038/s41467-025-62794-8.
Solution-based soft matter self-assembly (SA) promises unique material structures and properties from approaches including additive manufacturing/three-dimensional (3D) printing. The 3D printing of periodically ordered porous functional inorganic materials through SA unfolding during printing remains a major challenge, however, due to the often vastly different ordering kinetics of separate processes at different length scales. Here, we report a "one-pot" direct ink writing process to produce hierarchically porous transition metal nitrides and precursor oxides from block copolymer (BCP) SA. Heat treatment protocols identified in various environments enable mesostructure retention in the final crystalline materials with periodic lattices on three distinct length scales. Moreover, embedded printing enables the first BCP directed mesoporous non-self-supporting helical oxides and nitrides. Resulting nitrides are superconducting, with record nanoconfinement-induced upper critical fields correlated with BCP molar mass and record surface areas for compound superconductors. Results suggest scalable porous functional inorganic material formation approaches for applications including catalysis, sensing, and microelectronics.
基于溶液的软物质自组装(SA)有望通过包括增材制造/三维(3D)打印在内的方法获得独特的材料结构和性能。然而,由于在不同长度尺度上单独过程的有序动力学往往有很大差异,通过打印过程中的SA展开来3D打印周期性有序的多孔功能无机材料仍然是一个重大挑战。在这里,我们报告了一种“一锅法”直接墨水书写工艺,用于从嵌段共聚物(BCP)SA制备分级多孔过渡金属氮化物和前驱体氧化物。在各种环境中确定的热处理方案能够使最终结晶材料中的介观结构得以保留,在三个不同长度尺度上具有周期性晶格。此外,嵌入式打印实现了首个BCP定向介孔非自支撑螺旋氧化物和氮化物。所得氮化物具有超导性,具有与BCP摩尔质量相关的创纪录的纳米限域诱导上临界场以及复合超导体的创纪录表面积。结果表明了可扩展的多孔功能无机材料形成方法,可用于催化、传感和微电子等应用。