Li Zhenxia, Liu Bo, Lv Rongtao, Sun Zhe, Li QingYan, Zhang XueLi
College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China.
Microb Cell Fact. 2025 Aug 20;24(1):192. doi: 10.1186/s12934-025-02819-5.
Genome-scale mutagenesis integrated with high-throughput phenotypic screening and causal mutation mapping serves as a robust paradigm for systemic genetic dissection. Despite the application of non-homologous end joining (NHEJ)-mediated genome editing in Yarrowia lipolytica, the development of alternative genome-wide mutagenesis strategies remains unexplored in this industrially relevant oleaginous yeast.
We developed the Helicase-Assisted (Helicase-CDA) system, a genome-wide mutagenesis platform integrating the helicase domain of Yarrowia MCM5 (Encoded by YALI1_A01766g) with cytidine deaminase (CDA). This system enables continuous C-to-T specific mutations at random genomic loci. Applied to an industrial β-carotene-producing Y. lipolytica strain, Helicase-CDA system generated a mutagenized library through 7-day subculturing. Through high-throughput screening, we successfully isolated the mutant strain CDA-14, which demonstrated a 25% enhancement in β-carotene production (448.1 mg/L) compared to the wild-type strain. Notably, its productivity of β-carotene reached 6.15 g/L in fed-batch fermentation. Whole-genome sequencing revealed a G1637A substitution in YALI1_B16239g, which encodes a membrane protein showing homology to sterol biosynthesis regulator MGA2. This mutation led to reduced ERG1 expression level and redirected central carbon flux toward carotenoid synthesis by perturbing isoprenoid precursor partitioning.
Helicase-CDA system circumvents the dependency on NHEJ-mediated whole-genome mutation approach, offering a robust tool for continuous genome evolution in pre-engineered industrial strains. This study not only enhances genome editing in Y. lipolytica but also identifies a practical target for optimizing terpenoid biosynthesis, demonstrating significant potential for applications in metabolic engineering and synthetic biology.
基因组规模的诱变与高通量表型筛选及因果突变定位相结合,是系统遗传剖析的强大范例。尽管非同源末端连接(NHEJ)介导的基因组编辑已应用于解脂耶氏酵母,但在这种具有工业相关性的产油酵母中,替代的全基因组诱变策略的开发仍未得到探索。
我们开发了解旋酶辅助(解旋酶 - CDA)系统,这是一个全基因组诱变平台,将解脂耶氏酵母MCM5(由YALI1_A01766g编码)的解旋酶结构域与胞嘧啶脱氨酶(CDA)整合在一起。该系统能够在随机基因组位点进行连续的C到T特异性突变。应用于工业生产β - 胡萝卜素的解脂耶氏酵母菌株,解旋酶 - CDA系统通过7天的传代培养产生了一个诱变文库。通过高通量筛选,我们成功分离出突变菌株CDA - 14,与野生型菌株相比,其β - 胡萝卜素产量提高了25%(448.1 mg/L)。值得注意的是,其β - 胡萝卜素在补料分批发酵中的产量达到6.15 g/L。全基因组测序揭示了YALI1_B16239g中的G1637A替换,该基因编码一种与甾醇生物合成调节因子MGA2具有同源性的膜蛋白。这种突变导致ERG1表达水平降低,并通过干扰类异戊二烯前体分配将中心碳通量重新导向类胡萝卜素合成。
解旋酶 - CDA系统规避了对NHEJ介导的全基因组突变方法的依赖,为预先设计的工业菌株的连续基因组进化提供了一个强大的工具。这项研究不仅增强了解脂耶氏酵母中的基因组编辑,还确定了优化萜类生物合成的一个实际靶点,展示了在代谢工程和合成生物学中的巨大应用潜力。