El-Tanani Yahia, El-Tanani Mohamed, Rabbani Syed Arman, Babiker Rasha, Satyam Shakta Mani
Royal Cornwall Hospital, NHS Trust, Treliske, Truro, UK.
RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
Sci Prog. 2025 Jul-Sep;108(3):368504251362350. doi: 10.1177/00368504251362350. Epub 2025 Aug 19.
Breast cancer recurrence remains a major cause of mortality, with up to 30% of early-stage patients relapsing as incurable metastatic disease. Conventional surveillance with imaging and serum markers (CA15-3, CEA) lacks the sensitivity and specificity to detect minimal residual disease. This narrative review examines non-invasive biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs) and exosomes and the technologies enhancing their performance. Droplet digital PCR and next-generation sequencing detect ctDNA at allele frequencies below 0.1%, identifying molecular relapse a median of 10-12 months before radiologic progression. Microfluidic and affinity-based platforms isolate CTCs with over 75% sensitivity in metastatic settings. Nanoengineered sensors and standardized workflows improve exosome isolation, revealing miRNA and protein signatures predictive of recurrence. Proteomic and metabolomic profiling identify dysregulated metabolic pathways and protein networks, offering functional insights that complement molecular assays. Integrative multi-omics approaches merge genomic, transcriptomic, proteomic and metabolomic data; machine-learning frameworks detect subtle patterns and correlations, enabling dynamic, personalized surveillance. By detecting molecular and functional biomarkers early, clinicians can tailor therapy, monitor treatment response and intervene promptly. Challenges include low analyte abundance, assay variability, high costs and lack of standardized protocols, limiting clinical adoption. Prospective validation in large cohorts is critical. We highlight ongoing clinical trials such as ctDNA-guided adjuvant therapy and CTC-driven stratification studies that aim to establish clinical utility. Non-invasive biomarker platforms could shift breast cancer follow-up from reactive detection to proactive intervention, ultimately improving survival and quality of life through personalized, real-time monitoring.
乳腺癌复发仍然是导致死亡的主要原因,高达30%的早期患者会复发为无法治愈的转移性疾病。传统的影像学和血清标志物(CA15-3、CEA)监测缺乏检测微小残留疾病的敏感性和特异性。这篇叙述性综述探讨了循环肿瘤DNA(ctDNA)、循环肿瘤细胞(CTC)和外泌体等非侵入性生物标志物以及提高其性能的技术。液滴数字PCR和下一代测序能够检测到等位基因频率低于0.1%的ctDNA,比影像学进展提前10-12个月发现分子复发。微流控和基于亲和力的平台在转移性疾病中分离CTC的敏感性超过75%。纳米工程传感器和标准化工作流程改善了外泌体的分离,揭示了预测复发的miRNA和蛋白质特征。蛋白质组学和代谢组学分析确定了失调的代谢途径和蛋白质网络,提供了补充分子检测的功能见解。综合多组学方法整合了基因组、转录组、蛋白质组和代谢组数据;机器学习框架检测细微模式和相关性,实现动态、个性化监测。通过早期检测分子和功能生物标志物,临床医生可以调整治疗方案、监测治疗反应并及时进行干预。挑战包括分析物丰度低、检测变异性、成本高以及缺乏标准化方案,限制了临床应用。在大型队列中进行前瞻性验证至关重要。我们重点介绍了正在进行的临床试验,如ctDNA引导的辅助治疗和CTC驱动的分层研究,旨在确立临床实用性。非侵入性生物标志物平台可能会将乳腺癌随访从反应性检测转变为主动干预,最终通过个性化、实时监测提高生存率和生活质量。