Chase Elizabeth C, Boonstra Philip S, Taylor Jeremy M G
RAND Corporation.
Department of Biostatistics, University of Michigan.
Am Stat. 2025 Aug;79(3):291-301. doi: 10.1080/00031305.2025.2453674. Epub 2025 Feb 28.
We present an alternative approach to estimating the cumulative incidence function that uses non-parametric multiple imputation to reduce the problem to that of estimating a binomial proportion. In the standard competing risks setting, we show mathematically and empirically that our imputation-based estimator is equivalent to the Aalen-Johansen estimator of the cumulative incidence given a sufficient number of imputations. However, our approach allows for the use of a wider variety of methods for the analysis of binary outcomes, including preferred options for uncertainty estimation. While we focus on the cumulative incidence function, the multiple imputation approach likely extends to more complex problems in competing risks.
我们提出了一种估计累积发病率函数的替代方法,该方法使用非参数多重填补将问题简化为估计二项比例的问题。在标准的竞争风险设定中,我们通过数学和实证表明,在进行足够数量的填补后,我们基于填补的估计器等同于累积发病率的Aalen-Johansen估计器。然而,我们的方法允许使用更广泛的方法来分析二元结局,包括不确定性估计的首选方法。虽然我们专注于累积发病率函数,但多重填补方法可能会扩展到竞争风险中更复杂的问题。