ICES, Toronto, Ontario, Canada.
Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada.
Stat Med. 2019 Feb 28;38(5):751-777. doi: 10.1002/sim.8008. Epub 2018 Oct 22.
Propensity-score matching is a popular analytic method to remove the effects of confounding due to measured baseline covariates when using observational data to estimate the effects of treatment. Time-to-event outcomes are common in medical research. Competing risks are outcomes whose occurrence precludes the occurrence of the primary time-to-event outcome of interest. All non-fatal outcomes and all cause-specific mortality outcomes are potentially subject to competing risks. There is a paucity of guidance on the conduct of propensity-score matching in the presence of competing risks. We describe how both relative and absolute measures of treatment effect can be obtained when using propensity-score matching with competing risks data. Estimates of the relative effect of treatment can be obtained by using cause-specific hazard models in the matched sample. Estimates of absolute treatment effects can be obtained by comparing cumulative incidence functions (CIFs) between matched treated and matched control subjects. We conducted a series of Monte Carlo simulations to compare the empirical type I error rate of different statistical methods for testing the equality of CIFs estimated in the matched sample. We also examined the performance of different methods to estimate the marginal subdistribution hazard ratio. We recommend that a marginal subdistribution hazard model that accounts for the within-pair clustering of outcomes be used to test the equality of CIFs and to estimate subdistribution hazard ratios. We illustrate the described methods by using data on patients discharged from hospital with acute myocardial infarction to estimate the effect of discharge prescribing of statins on cardiovascular death.
倾向评分匹配是一种流行的分析方法,用于在使用观察性数据估计治疗效果时,消除因基线协变量测量而产生的混杂效应。在医学研究中,时间事件结局很常见。竞争风险是指一种结局的发生排除了主要关注的时间事件结局的发生。所有非致命结局和所有特定原因的死亡率结局都可能受到竞争风险的影响。关于在存在竞争风险的情况下进行倾向评分匹配的指南很少。我们描述了当使用竞争风险数据进行倾向评分匹配时,如何获得治疗效果的相对和绝对衡量指标。在匹配样本中,可以使用特定原因的风险模型来获得治疗效果的相对估计值。通过比较匹配治疗组和匹配对照组的累积发生率函数 (CIF),可以获得绝对治疗效果的估计值。我们进行了一系列蒙特卡罗模拟,以比较不同统计方法测试匹配样本中估计的 CIF 相等性的经验型 I 类错误率。我们还检查了不同方法估计边缘亚分布风险比的性能。我们建议使用考虑结局在配对内聚类的边缘亚分布风险模型来测试 CIF 的相等性并估计亚分布风险比。我们使用因急性心肌梗死出院的患者数据来说明描述的方法,以估计出院开具他汀类药物对心血管死亡的影响。
Stat Med. 2018-10-22
Stat Methods Med Res. 2017-2
J Clin Epidemiol. 2008-6
Interdiscip Cardiovasc Thorac Surg. 2025-7-3
J Cachexia Sarcopenia Muscle. 2025-4
Acta Neurol Belg. 2025-3-15
Circulation. 2016-2-9
Stat Methods Med Res. 2017-12
Stat Methods Med Res. 2017-2
Comput Stat Data Anal. 2014-4