文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生存分析中存在竞争风险的倾向评分匹配。

Propensity-score matching with competing risks in survival analysis.

机构信息

ICES, Toronto, Ontario, Canada.

Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada.

出版信息

Stat Med. 2019 Feb 28;38(5):751-777. doi: 10.1002/sim.8008. Epub 2018 Oct 22.


DOI:10.1002/sim.8008
PMID:30347461
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6900780/
Abstract

Propensity-score matching is a popular analytic method to remove the effects of confounding due to measured baseline covariates when using observational data to estimate the effects of treatment. Time-to-event outcomes are common in medical research. Competing risks are outcomes whose occurrence precludes the occurrence of the primary time-to-event outcome of interest. All non-fatal outcomes and all cause-specific mortality outcomes are potentially subject to competing risks. There is a paucity of guidance on the conduct of propensity-score matching in the presence of competing risks. We describe how both relative and absolute measures of treatment effect can be obtained when using propensity-score matching with competing risks data. Estimates of the relative effect of treatment can be obtained by using cause-specific hazard models in the matched sample. Estimates of absolute treatment effects can be obtained by comparing cumulative incidence functions (CIFs) between matched treated and matched control subjects. We conducted a series of Monte Carlo simulations to compare the empirical type I error rate of different statistical methods for testing the equality of CIFs estimated in the matched sample. We also examined the performance of different methods to estimate the marginal subdistribution hazard ratio. We recommend that a marginal subdistribution hazard model that accounts for the within-pair clustering of outcomes be used to test the equality of CIFs and to estimate subdistribution hazard ratios. We illustrate the described methods by using data on patients discharged from hospital with acute myocardial infarction to estimate the effect of discharge prescribing of statins on cardiovascular death.

摘要

倾向评分匹配是一种流行的分析方法,用于在使用观察性数据估计治疗效果时,消除因基线协变量测量而产生的混杂效应。在医学研究中,时间事件结局很常见。竞争风险是指一种结局的发生排除了主要关注的时间事件结局的发生。所有非致命结局和所有特定原因的死亡率结局都可能受到竞争风险的影响。关于在存在竞争风险的情况下进行倾向评分匹配的指南很少。我们描述了当使用竞争风险数据进行倾向评分匹配时,如何获得治疗效果的相对和绝对衡量指标。在匹配样本中,可以使用特定原因的风险模型来获得治疗效果的相对估计值。通过比较匹配治疗组和匹配对照组的累积发生率函数 (CIF),可以获得绝对治疗效果的估计值。我们进行了一系列蒙特卡罗模拟,以比较不同统计方法测试匹配样本中估计的 CIF 相等性的经验型 I 类错误率。我们还检查了不同方法估计边缘亚分布风险比的性能。我们建议使用考虑结局在配对内聚类的边缘亚分布风险模型来测试 CIF 的相等性并估计亚分布风险比。我们使用因急性心肌梗死出院的患者数据来说明描述的方法,以估计出院开具他汀类药物对心血管死亡的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/0f010aac52ad/SIM-38-751-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/422bf26bcc3c/SIM-38-751-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/c37d1ced68b9/SIM-38-751-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/5ee6b96336b2/SIM-38-751-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/4340e87a3630/SIM-38-751-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/18a63ae74b65/SIM-38-751-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/bb94782a9ab6/SIM-38-751-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/ab7452b9a480/SIM-38-751-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/eca4caa54485/SIM-38-751-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/2eaa4448480b/SIM-38-751-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/5a0b5c897d36/SIM-38-751-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/8c3687eda10d/SIM-38-751-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/9318281cad2f/SIM-38-751-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/f7f759c4db60/SIM-38-751-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/966f66762bf2/SIM-38-751-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/0f010aac52ad/SIM-38-751-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/422bf26bcc3c/SIM-38-751-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/c37d1ced68b9/SIM-38-751-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/5ee6b96336b2/SIM-38-751-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/4340e87a3630/SIM-38-751-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/18a63ae74b65/SIM-38-751-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/bb94782a9ab6/SIM-38-751-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/ab7452b9a480/SIM-38-751-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/eca4caa54485/SIM-38-751-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/2eaa4448480b/SIM-38-751-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/5a0b5c897d36/SIM-38-751-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/8c3687eda10d/SIM-38-751-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/9318281cad2f/SIM-38-751-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/f7f759c4db60/SIM-38-751-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/966f66762bf2/SIM-38-751-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/6900780/0f010aac52ad/SIM-38-751-g015.jpg

相似文献

[1]
Propensity-score matching with competing risks in survival analysis.

Stat Med. 2018-10-22

[2]
Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations.

Biom J. 2009-2

[3]
The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments.

Stat Med. 2014-3-30

[4]
Optimal full matching for survival outcomes: a method that merits more widespread use.

Stat Med. 2015-12-30

[5]
Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.

Stat Methods Med Res. 2017-2

[6]
The performance of different propensity-score methods for estimating relative risks.

J Clin Epidemiol. 2008-6

[7]
Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes.

Stat Med. 2020-5-20

[8]
Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses.

Int J Biostat. 2009-4-14

[9]
The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study.

Stat Methods Med Res. 2016-10

[10]
Covariate-adjusted survival analyses in propensity-score matched samples: Imputing potential time-to-event outcomes.

Stat Methods Med Res. 2020-3

引用本文的文献

[1]
A Multiple Imputation Approach for the Cumulative Incidence, with Implications for Variance Estimation.

Am Stat. 2025-8

[2]
Bisphosphonates and the risk of dementia in patients with osteoporosis or fragility fracture: A population-based study in Hong Kong.

Alzheimers Dement. 2025-7

[3]
Healthcare resource utilisation and costs associated with hypertension in children and adolescents: a population-based cohort study.

Lancet Reg Health Am. 2025-6-24

[4]
National outcomes of surgical ablation for atrial fibrillation at the time of mitral surgery.

Interdiscip Cardiovasc Thorac Surg. 2025-7-3

[5]
Effectiveness of chemotherapy with/without radiotherapy for stage IVb esophageal squamous cell carcinoma: a population-based target trial emulation study.

Discov Oncol. 2025-5-6

[6]
Comment on "Risk of Sarcopenia Following Long-Term Statin Use in Community-Dwelling Middle-Aged and Older Adults in Japan" by Huang et al.

J Cachexia Sarcopenia Muscle. 2025-4

[7]
Survival outcomes among hospitalized patients with dementia: a propensity score matching analysis.

Acta Neurol Belg. 2025-3-15

[8]
Cardio and cerebrovascular diseases risk among Alzheimer's disease patients and racial/ethnic disparities, based on Hawaii Medicare data.

J Alzheimers Dis Rep. 2024-11-24

[9]
Inverse Probability of Treatment Weighting Using the Propensity Score With Competing Risks in Survival Analysis.

Stat Med. 2025-2-28

[10]
Stereotactic ablative radiotherapy versus conventional fractionated radiotherapy for clinical early-stage non-small-cell lung cancer: a population-based study.

Thorac Cancer. 2024-8

本文引用的文献

[1]
Practical recommendations for reporting Fine-Gray model analyses for competing risk data.

Stat Med. 2017-11-30

[2]
Comparing the performance of propensity score methods in healthcare database studies with rare outcomes.

Stat Med. 2017-5-30

[3]
The number of primary events per variable affects estimation of the subdistribution hazard competing risks model.

J Clin Epidemiol. 2017-1-12

[4]
Introduction to the Analysis of Survival Data in the Presence of Competing Risks.

Circulation. 2016-2-9

[5]
Estimating the effect of treatment on binary outcomes using full matching on the propensity score.

Stat Methods Med Res. 2017-12

[6]
The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes.

Stat Methods Med Res. 2017-8

[7]
The Cardiovascular Health in Ambulatory Care Research Team (CANHEART): using big data to measure and improve cardiovascular health and healthcare services.

Circ Cardiovasc Qual Outcomes. 2015-3

[8]
The use of bootstrapping when using propensity-score matching without replacement: a simulation study.

Stat Med. 2014-10-30

[9]
Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.

Stat Methods Med Res. 2017-2

[10]
Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases.

Comput Stat Data Anal. 2014-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索