文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米颗粒促进石榴生长和防御,抑制根结线虫。

Nanoparticles boost pomegranate growth and defense, suppressing root-knot nematodes.

作者信息

Abdel-Wahab Dalia A, El-Zawahry Aida M I, Hamada Afaf M, Abdel-Salam Maha M, Samy Ahmed M

机构信息

Botany Department, Faculty of Science, New Valley University, El Kharja, Egypt.

Plant Pathology Department, Faculty of Agriculture, Assiut University, Assiut, Egypt.

出版信息

Front Plant Sci. 2025 Aug 4;16:1560126. doi: 10.3389/fpls.2025.1560126. eCollection 2025.


DOI:10.3389/fpls.2025.1560126
PMID:40831723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12358448/
Abstract

Root-knot nematodes ( spp.) are a major threat to pomegranate cultivation. Nanoparticles (NPs) present a possible substitute nematicide that lessens dependency on potentially dangerous chemical nematicides. This study assessed the efficacy of copper oxide (CuO) and iron oxide (FeO) NPs to promote pomegranate ( L. cultivar Hegazy) growth and provide protection against the root-knot nematode (). The application of the NPs as copper oxide (CuO) and iron oxide (FeO) involved both drenching and spraying using 50 mg/L on one-year-old pomegranate ( cultivar Hegazy) seedlings, nematode-infected with (). By assessing how CuO and FeO NPs affect nematode and pomegranate growth, and some biochemical traits. Treatments with NPs successfully reduced the number of pomegranate root egg masses, galls, and juvenile nematodes in soil. NP treatments exhibited increased side branching, leaf area, levels of photosynthetic pigments (chlorophyll , , and carotenoids), total antioxidants, thiol compounds [glutathione (GSH), non-protein thiols (NPTs), protein thiols (PTs)], and flavonoids. However, NP treatments reduced the accumulation of malondialdehyde (MDA) and proline, stress markers, in pomegranate plants infected with nematodes. NP treatments did not affect the production of phenolic compounds in pomegranates. These results indicate that the NP effect partially depends on the increased production of photosynthetic pigments, thiol compounds, and flavonoids. These results elucidate how nanoparticles control nematode infection. Further research in this area is necessary to determine whether NPs are the best treatment for nematode infections.

摘要

根结线虫是石榴种植的主要威胁。纳米颗粒是一种可能的替代杀线虫剂,可减少对潜在危险化学杀线虫剂的依赖。本研究评估了氧化铜(CuO)和氧化铁(FeO)纳米颗粒促进石榴(品种Hegazy)生长以及抵御根结线虫的效果。将纳米颗粒以氧化铜(CuO)和氧化铁(FeO)的形式应用,对感染根结线虫的一年生石榴(品种Hegazy)幼苗进行50 mg/L的灌根和喷雾处理。通过评估CuO和FeO纳米颗粒对线虫和石榴生长以及一些生化特性的影响。纳米颗粒处理成功减少了石榴根卵块、虫瘿和土壤中幼虫线虫的数量。纳米颗粒处理使侧枝数量、叶面积、光合色素(叶绿素a、b和类胡萝卜素)水平、总抗氧化剂、硫醇化合物[谷胱甘肽(GSH)、非蛋白硫醇(NPTs)、蛋白硫醇(PTs)]和类黄酮增加。然而,纳米颗粒处理降低了感染线虫的石榴植株中丙二醛(MDA)和脯氨酸(应激标志物)的积累。纳米颗粒处理对石榴中酚类化合物的产生没有影响。这些结果表明,纳米颗粒的作用部分取决于光合色素、硫醇化合物和类黄酮产量的增加。这些结果阐明了纳米颗粒如何控制线虫感染。该领域需要进一步研究以确定纳米颗粒是否是线虫感染的最佳处理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/499eb9727d86/fpls-16-1560126-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/0f58fc6ad67f/fpls-16-1560126-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/8bbfae71b644/fpls-16-1560126-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/3e3146c1de6c/fpls-16-1560126-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/220a71f9b287/fpls-16-1560126-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/6f1eab14cf0f/fpls-16-1560126-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/9c21eba659cf/fpls-16-1560126-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/f63d455ef8b3/fpls-16-1560126-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/f3992513f1db/fpls-16-1560126-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/499eb9727d86/fpls-16-1560126-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/0f58fc6ad67f/fpls-16-1560126-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/8bbfae71b644/fpls-16-1560126-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/3e3146c1de6c/fpls-16-1560126-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/220a71f9b287/fpls-16-1560126-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/6f1eab14cf0f/fpls-16-1560126-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/9c21eba659cf/fpls-16-1560126-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/f63d455ef8b3/fpls-16-1560126-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/f3992513f1db/fpls-16-1560126-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca9c/12358448/499eb9727d86/fpls-16-1560126-g009.jpg

相似文献

[1]
Nanoparticles boost pomegranate growth and defense, suppressing root-knot nematodes.

Front Plant Sci. 2025-8-4

[2]
Meloidogyne incognita parasitism is affected by Pseudomonas protegens CHA0 and its effects on tomato-associated microbiota.

Environ Microbiome. 2025-7-1

[3]
Alhagi maurorum: A Medicinal Treasure Trove Empowered by Copper Oxide Nanoparticles for Enhanced Secondary Metabolite Synthesis.

Appl Biochem Biotechnol. 2025-5-27

[4]
Efficacy of 2-undecanol produced by KM2501-1 in controlling .

Microbiol Spectr. 2025-6-26

[5]
Virulence of Five Root-Knot Nematodes ( spp.) on Nine Industrial Hemp ( L.) Varieties and Nematicidal Potential of Hemp Seed Extracts Against .

Plants (Basel). 2025-1-15

[6]
First Report of Root-Knot Nematode on in the Republic of Korea.

Plant Dis. 2025-6-27

[7]
Root-knot nematode : A new threat to in the state of Pará, Brazil.

Plant Dis. 2025-6-24

[8]
Comparison between the effects of silver and titanium nanoparticles and their bulk counterparts on Meloidogyne Javanica.

Sci Rep. 2025-8-25

[9]
Growth, Physiological, and Biochemical Variations in Tomatoes after Infection with Different Density Levels of .

Plants (Basel). 2024-1-18

[10]
First Report of Infecting Tomato () in Texas, United States.

Plant Dis. 2025-6-26

本文引用的文献

[1]
In Vitro Study on Nematicidal Effect of Silver Nanoparticles Against .

Molecules. 2025-3-1

[2]
Insights in to iron-based nanoparticles (hematite and magnetite) improving the maize growth (Zea mays L.) and iron nutrition with low environmental impacts.

Chemosphere. 2024-8

[3]
Green iron oxide nanoparticles and magnetic nanobiochar: enhancing tomato performance, phytochemicals, and root-knot nematode resistance.

BMC Plant Biol. 2024-5-29

[4]
From root to shoot: quantifying nematode tolerance in Arabidopsis thaliana by high-throughput phenotyping of plant development.

J Exp Bot. 2023-9-29

[5]
Non-Protein Thiol Compounds and Antioxidant Responses Involved in Bryophyte Heavy-Metal Tolerance.

Int J Mol Sci. 2023-3-10

[6]
Thiol, volatile and semi-volatile compounds alleviate the stress of zinc oxide nanoparticles of the pomegranate callus.

Chemosphere. 2023-1

[7]
Silver and zinc oxide nanoparticles disrupt essential parasitism, neuropeptidergic, and expansion-like proteins genes in Meloidogyneincognita.

Exp Parasitol. 2022-12

[8]
Glutathione contributes to plant defence against parasitic cyst nematodes.

Mol Plant Pathol. 2022-7

[9]
Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in .

Nanomaterials (Basel). 2021-6-11

[10]
Constitutive and Induced Expression of Total Phenol and Phenol Oxidases in Wheat Genotypes Ranging in Resistance/Susceptibility to the Root-Lesion Nematode .

Plants (Basel). 2020-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索