Suppr超能文献

膜弯曲能量决定了蛋白质聚集体的紧密生长。

Membrane bending energy selects for compact growth of protein assemblies.

作者信息

Ying Yue Moon, Johnson Margaret E

机构信息

T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218.

出版信息

bioRxiv. 2025 Aug 11:2025.08.08.669413. doi: 10.1101/2025.08.08.669413.

Abstract

Remodeling of cell membranes into vesicles is essential for receptor transport into cells and viral escape from infected cells. Membranes must be forced into these highly curved vesicles, and this is primarily driven through a structured assembly of multiple, multivalent interacting protein subunits forming a lattice. Lattice assembly from these subunits is a stochastic process, and intermediate structures formed during growth can vary in both structure and stability. Here we show that the membrane bending energy cost per protein rises significantly when remodeling is driven by lattice intermediates that deviate from compact, ideal spherical structures. We use a continuum membrane mechanics model coupled to lattice intermediates assembled from stochastic rigid-body simulations of HIV-1 Gag lattice assembly to quantify the bending energy as it systematically varies with lattice eccentricity. Our results show that highly eccentric lattices induce a higher bending energy cost because the lattices still deform the membrane into an approximate spherical cap, but the radius of the cap is larger due to the imperfect lattice geometry. These quantitative trends are also nearly independent of the density of links to the membrane, emphasizing the importance of the lattice perimeter shape instead. Rescaling thus recovers an approximately universal bending energy cost when evaluated relative to the circumscribing sphere of the lattice intermediates. These results show that assembly pathways coupled to membrane remodeling face much stronger selection pressure for highly compact growth compared to solution assembly pathways due to bending energy costs and provide a tool to characterize these pathways during processes like viral budding and endocytosis.

摘要

细胞膜重塑为囊泡对于受体转运进入细胞以及病毒从受感染细胞中逃逸至关重要。细胞膜必须被迫形成这些高度弯曲的囊泡,而这主要是通过多个多价相互作用的蛋白质亚基形成晶格的结构化组装来驱动的。这些亚基形成晶格是一个随机过程,生长过程中形成的中间结构在结构和稳定性上都可能有所不同。在这里,我们表明,当重塑由偏离紧凑、理想球形结构的晶格中间体驱动时,每个蛋白质的膜弯曲能量成本会显著增加。我们使用一个连续膜力学模型,该模型与从HIV-1 Gag晶格组装的随机刚体模拟中组装的晶格中间体相结合,以量化弯曲能量,因为它会随着晶格偏心率系统地变化。我们的结果表明,高度偏心的晶格会导致更高的弯曲能量成本,因为这些晶格仍然会将膜变形为近似球形帽,但由于晶格几何形状不完善,帽的半径更大。这些定量趋势也几乎与连接到膜的链的密度无关,反而强调了晶格周边形状的重要性。因此,相对于晶格中间体的外接球进行评估时,重新缩放可恢复近似通用的弯曲能量成本。这些结果表明,与溶液组装途径相比,由于弯曲能量成本,与膜重塑相关的组装途径在高度紧凑的生长方面面临更强的选择压力,并提供了一种工具来表征病毒出芽和内吞作用等过程中的这些途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0e/12363853/65f680c835b3/nihpp-2025.08.08.669413v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验