文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习工具在急性呼吸窘迫综合征检测和预测中的应用。

Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction.

机构信息

Department of Critical Care Medicine, McGill University, Montreal, QC, Canada.

Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.

出版信息

Crit Care Med. 2024 Nov 1;52(11):1768-1780. doi: 10.1097/CCM.0000000000006390. Epub 2024 Aug 12.


DOI:10.1097/CCM.0000000000006390
PMID:39133071
Abstract

Machine learning (ML) tools for acute respiratory distress syndrome (ARDS) detection and prediction are increasingly used. Therefore, understanding risks and benefits of such algorithms is relevant at the bedside. ARDS is a complex and severe lung condition that can be challenging to define precisely due to its multifactorial nature. It often arises as a response to various underlying medical conditions, such as pneumonia, sepsis, or trauma, leading to widespread inflammation in the lungs. ML has shown promising potential in supporting the recognition of ARDS in ICU patients. By analyzing a variety of clinical data, including vital signs, laboratory results, and imaging findings, ML models can identify patterns and risk factors associated with the development of ARDS. This detection and prediction could be crucial for timely interventions, diagnosis and treatment. In summary, leveraging ML for the early prediction and detection of ARDS in ICU patients holds great potential to enhance patient care, improve outcomes, and contribute to the evolving landscape of precision medicine in critical care settings. This article is a concise definitive review on artificial intelligence and ML tools for the prediction and detection of ARDS in critically ill patients.

摘要

机器学习(ML)工具在急性呼吸窘迫综合征(ARDS)的检测和预测中被越来越多地使用。因此,了解这些算法的风险和益处与床边的相关性是相关的。ARDS 是一种复杂而严重的肺部疾病,由于其多因素性质,精确定义可能具有挑战性。它通常是对各种潜在医疗状况的反应,如肺炎、败血症或创伤,导致肺部广泛炎症。ML 在支持 ICU 患者中 ARDS 的识别方面显示出了有前途的潜力。通过分析各种临床数据,包括生命体征、实验室结果和影像学发现,ML 模型可以识别与 ARDS 发展相关的模式和风险因素。这种检测和预测对于及时干预、诊断和治疗至关重要。总之,利用 ML 对 ICU 患者的 ARDS 进行早期预测和检测具有很大的潜力,可以增强患者护理、改善结果,并为重症监护环境中精准医学的发展做出贡献。本文是一篇关于人工智能和 ML 工具在危重病患者中预测和检测 ARDS 的简明权威综述。

相似文献

[1]
Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction.

Crit Care Med. 2024-11-1

[2]
Predictive Modeling of Acute Respiratory Distress Syndrome Using Machine Learning: Systematic Review and Meta-Analysis.

J Med Internet Res. 2025-5-13

[3]
Early Prediction of Mortality Risk in Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis.

J Med Internet Res. 2025-5-20

[4]
[Analysis of clinical treatment of acute respiratory distress syndrome assisted by artificial intelligence].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[5]
Establishment and validation of predictive model of ARDS in critically ill patients.

J Transl Med. 2025-1-13

[6]
Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries.

JAMA. 2016-2-23

[7]
A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients.

Int J Med Inform. 2024-6

[8]
Developing and evaluating a machine-learning-based algorithm to predict the incidence and severity of ARDS with continuous non-invasive parameters from ordinary monitors and ventilators.

Comput Methods Programs Biomed. 2023-3

[9]
Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.

BMC Pulm Med. 2023-10-3

[10]
Care bundles for improving outcomes in patients with COVID-19 or related conditions in intensive care - a rapid scoping review.

Cochrane Database Syst Rev. 2020-12-21

引用本文的文献

[1]
Multimodal Deep Learning for ARDS Detection.

medRxiv. 2025-8-12

[2]
Novel machine learning models for the prediction of acute respiratory distress syndrome after liver transplantation.

Front Artif Intell. 2025-5-27

[3]
Impact of Pathogen Status on Sepsis-Associated Acute Respiratory Distress Syndrome Outcomes.

Med Sci Monit. 2025-6-5

[4]
Predicting clinical outcomes at hospital admission of patients with COVID-19 pneumonia using artificial intelligence: a secondary analysis of a randomized clinical trial.

Front Med (Lausanne). 2025-5-2

[5]
A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study.

BMC Infect Dis. 2025-4-21

[6]
Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research.

Int J Environ Res Public Health. 2025-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索