Berchuck Samuel I, Bhavsar Nrupen, Schappe Tyler, Zaribafzadeh Hamed, Matsouaka Roland, McElroy Lisa M
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
Department of Surgery, Duke University School of Medicine, Durham, USA.
Curr Transplant Rep. 2024 Dec;11(4):243-250. doi: 10.1007/s40472-024-00454-4. Epub 2024 Oct 8.
This paper summarizes predictive models developed to determine transplant eligibility over the past 5 years, focusing on application of novel data sources and methodologic approaches.
The contemporary body of research employing predictive models to inform transplant eligibility mainly relies on pre- or post-transplant patient survival. No studies have sought to assimilate all features collected during the transplant evaluation process to produce a composite prediction of post-transplant success or failure.
Predictive modeling is a commonly used statistical technique that uses available data on a subset of a target population to estimate the current health state or the probability of developing a future health outcome among individuals in the target population. Modern analytic techniques allow for transformation of vast amounts of data into actionable information but require curated organized well-defined data to deploy. That data is currently lacking for patients referred for transplant.
本文总结了过去5年为确定移植资格而开发的预测模型,重点关注新型数据源和方法学方法的应用。
当代利用预测模型来确定移植资格的研究主要依赖于移植前或移植后患者的生存率。尚无研究试图整合移植评估过程中收集的所有特征,以得出移植成功或失败的综合预测。
预测建模是一种常用的统计技术,它利用目标人群子集的现有数据来估计目标人群中个体当前的健康状况或未来发生健康结果的概率。现代分析技术能够将大量数据转化为可操作的信息,但需要精心整理、组织良好且定义明确的数据才能应用。目前,转诊接受移植的患者缺乏这样的数据。