Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington.
Department of Biostatistics, University of Washington, Seattle, Washington.
J Heart Lung Transplant. 2022 Aug;41(8):1063-1074. doi: 10.1016/j.healun.2022.05.008. Epub 2022 May 20.
Improved predictive models are needed in lung transplantation in the setting of a proposed allocation system that incorporates longer-term post-transplant survival in the United States. Allocation systems require accurate mortality predictions to justly allocate organs.
Utilizing the United Network for Organ Sharing database (2005-2017), we fit models to predict 1-year mortality based on the Lung Allocation Score (LAS), the Chan, et al, 2019 model, a novel "clinician" model (a priori clinician selection of pre-transplant covariates), and two machine learning models (Least Absolute Shrinkage and Selection Operator; LASSO and Random Forests) for predicting 1-year and 3-year post-transplant mortality. We compared predictive accuracy among models. We evaluated the calibration of models by comparing average predicted probability vs observed outcome per decile. We repeated analyses fit for 3-year mortality, disease category, including donor covariates, and LAS era.
The area under the cure for all models was low, ranging from 0.55 to 0.62. All exhibited reasonable negative predictive values (0.87-0.90), but the positive predictive value for was poor (all <0.25). Evaluating LAS calibration found 1-year post-transplant estimates consistently overestimated risk of mortality, with greater differences in higher deciles. LASSO, Random Forests, and clinician models showed no improvement when evaluated by disease category or with the addition of donor covariates and performed worse for 3-year outcomes.
The LAS overestimated patients' risk of post-transplant death, thus underestimating transplant benefit in the sickest candidates. Novel models based on pre-transplant recipient covariates failed to improve prediction. There should be wariness in post-transplant survival predictions from available models.
在美国拟议的分配制度中,需要改进肺移植的预测模型,该制度纳入了移植后长期生存情况。分配制度需要准确的死亡率预测,以公平分配器官。
利用美国器官共享网络数据库(2005-2017 年),我们根据肺分配评分(LAS)、Chan 等人的 2019 年模型、新的“临床医生”模型(移植前预测变量的先验临床医生选择)以及两种机器学习模型(最小绝对收缩和选择算子;LASSO 和随机森林)拟合模型,以预测 1 年和 3 年移植后死亡率。我们比较了模型之间的预测准确性。我们通过比较每个十分位数的平均预测概率与观察结果来评估模型的校准。我们重复了针对 3 年死亡率、疾病类别(包括供体协变量)和 LAS 时代进行的分析。
所有模型的治愈率都较低,范围在 0.55 到 0.62 之间。所有模型都表现出合理的负预测值(0.87-0.90),但阳性预测值较差(均<0.25)。评估 LAS 校准发现,1 年移植后估计值一致高估了死亡率风险,在较高的十分位数中差异更大。当按疾病类别评估或添加供体协变量时,LASSO、随机森林和临床医生模型并未显示出改进,并且在 3 年结果方面表现更差。
LAS 高估了患者移植后死亡的风险,从而低估了最病重患者的移植获益。基于移植前受者协变量的新型模型未能改善预测。在使用现有模型进行移植后生存预测时应谨慎。