Zhang Chen, Gao Yan, Cui Ruyue, Zhang Hanxi, Tian Jinhua, Tang Yujie, Yang Lei, Feng Chaofan, Patimisco Pietro, Sampaolo Angelo, Spagnolo Vincenzo, Yin Xukun, Dong Lei, Wu Hongpeng
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.
Photoacoustics. 2025 Aug 6;45:100758. doi: 10.1016/j.pacs.2025.100758. eCollection 2025 Oct.
We present a novel approach for gas concentration measurement using a differential resonant photoacoustic cell combined with a deep learning-based signal denoising model. This method addresses the persistent challenge of noise interference in 2 signals at low gas concentrations, where conventional processing methods struggle to maintain signal fidelity. To resolve this, we propose a deep learning model that integrates 1D Convolutional Neural Networks (1D CNNs) for local feature extraction and Transformer networks for capturing global dependencies. The model was trained using synthetic signals with added noise to simulate real-world conditions, ensuring robustness and adaptability. Applied to experimental 2 signals, the model demonstrated excellent noise suppression capabilities, enhancing the signal-to-noise ratio (SNR) of 500 ppb acetylene signals by a factor of approximately 70. Furthermore, the determination coefficient (R²) improved, reflecting better accuracy and linearity in signal reconstruction. These results underscore the model's potential for improving detection sensitivity and reliability in trace gas measurements, marking a significant advancement in spectroscopic signal processing for gas detection.
我们提出了一种使用差分共振光声池结合基于深度学习的信号去噪模型进行气体浓度测量的新方法。该方法解决了低气体浓度下两个信号中噪声干扰这一长期存在的挑战,在这种情况下,传统处理方法难以保持信号保真度。为了解决这个问题,我们提出了一种深度学习模型,该模型集成了用于局部特征提取的一维卷积神经网络(1D CNN)和用于捕捉全局依赖性的Transformer网络。该模型使用添加了噪声的合成信号进行训练,以模拟实际情况,确保其鲁棒性和适应性。应用于实验中的两个信号时,该模型展示了出色的噪声抑制能力,将500 ppb乙炔信号的信噪比(SNR)提高了约70倍。此外,决定系数(R²)有所提高,反映出信号重建中更好的准确性和线性度。这些结果强调了该模型在提高痕量气体测量中的检测灵敏度和可靠性方面的潜力,标志着气体检测光谱信号处理方面的重大进展。