Ghimire Niranjan, Rayamajhi Manish, Sun Yuyu, Deng Ying
Department of Biomedical Engineering, University of South Dakota, Sioux Falls, USA.
Department of Chemistry, The University of Massachusetts, Lowell, USA.
J Appl Biomater Funct Mater. 2025 Jan-Dec;23:22808000251358057. doi: 10.1177/22808000251358057. Epub 2025 Aug 20.
Orthopedic implant-associated infections, primarily caused by biofilm-forming , pose significant clinical challenges. These infections often lead to implant failure, prolonged antibiotic treatments, and an increased risk of revision surgeries, emphasizing the need for effective biofilm-resistant implant materials. In this study, we present a dual-functional titanium screw (Ti-S) grafted with chitosan (Cs), a biocompatible polymer known for its osteogenic and antimicrobial properties while maintaining mechanical integrity. The chitosan-modified titanium screw (Cs-Ti-S) was prepared via chemical immobilization to enhance resistance to biofilm formation while promoting osseointegration and preserving biomechanical integrity. Biomechanical testing confirmed that chitosan modification did not compromise mechanical performance, as Cs-Ti-S exhibited a torsional yield strength of 1.70 ± 0.00 Nm compared to 1.76 ± 0.05 Nm for unmodified titanium screws (Un-Ti-S), and an axial pullout force of 68.66 ± 14.36 N for Cs-Ti-S versus 70.33 ± 9.71 N for Un-Ti-S. Micro-scratch tests revealed similar hardness values (1.26 ± 0.03 GPa for Cs-Ti-S vs. 1.40 ± 0.07 GPa for Un-Ti-S) and scratch resistance, ensuring surface durability. Gene expression analysis showed upregulated β1-integrin on Cs-Ti-S at 24 h post-infection, indicating improved osteoblast adhesion. Scanning electron microscopy (SEM) analysis confirmed significantly reduced bacterial biofilm formation on Cs-Ti-S. Moreover, the combination of povidone-iodide (PI) treatment on Cs-Ti-S surfaces significantly inhibited biofilm formation over 7 days, unlike Un-Ti-S, which retained significant adhesion. These results suggest chitosan grafting as a scalable, non-antibiotic strategy to enhance antimicrobial resistance and osseointegration.
骨科植入物相关感染主要由生物膜形成引起,带来了重大的临床挑战。这些感染常常导致植入物失效、抗生素治疗时间延长以及翻修手术风险增加,凸显了对有效的抗生物膜植入材料的需求。在本研究中,我们展示了一种接枝壳聚糖(Cs)的双功能钛螺钉(Ti-S),壳聚糖是一种具有成骨和抗菌特性且能保持机械完整性的生物相容性聚合物。通过化学固定法制备壳聚糖改性钛螺钉(Cs-Ti-S),以增强其抗生物膜形成能力,同时促进骨整合并保持生物力学完整性。生物力学测试证实壳聚糖改性不会损害机械性能,Cs-Ti-S的扭转屈服强度为1.70±0.00 Nm,而未改性钛螺钉(Un-Ti-S)为1.76±0.05 Nm;Cs-Ti-S的轴向拔出力为68.66±14.36 N,Un-Ti-S为70.33±9.71 N。微划痕测试显示硬度值相似(Cs-Ti-S为1.26±0.03 GPa,Un-Ti-S为1.40±0.07 GPa)且抗划痕性相似,确保了表面耐久性。基因表达分析表明,感染后24小时,Cs-Ti-S上的β1整合素上调,表明成骨细胞粘附得到改善。扫描电子显微镜(SEM)分析证实Cs-Ti-S上的细菌生物膜形成显著减少。此外,与保留大量粘附的Un-Ti-S不同,在Cs-Ti-S表面联合使用聚维酮碘(PI)处理在7天内显著抑制了生物膜形成。这些结果表明壳聚糖接枝是一种可扩展的、非抗生素策略,可增强抗菌性和骨整合能力。