Zhou Ying, Zhang Xue, Qi Tiancong, Wang Zi-Han, Wang Yao, Wang Lin-Na, Zeng Yong-Lun, He Hanjie, Jiang Liwen, Xie Daoxin, Xiao Shi, Yu Lu-Jun, Chen Qin-Fang
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Adv Biotechnol (Singap). 2025 Aug 20;3(3):25. doi: 10.1007/s44307-025-00078-4.
In plants, autophagy is a conserved recycling system essential for development and stress responses by targeting cellular components for massive degradation in the vacuole. Our previous work suggested that autophagy contributes to Arabidopsis (Arabidopsis thaliana) stress responses by modulating NADPH-oxidase-mediated reactive oxygen species (ROS) homeostasis; however, the molecular link between extracellular ROS and autophagy remains unknown. We performed a yeast two-hybrid screen to identify components involved in autophagy, using the central autophagy component ATG8e as a bait. We identified MEMBRANE ATTACK COMPLEX/PERFORIN-LIKE 2 (MACP2) as an interactor of ATG8e via its the ATG8-interacting motif and confirmed this interaction by co-immunoprecipitation and bimolecular fluorescence complementation assays. MACP2-overexpressing lines showed enhanced sensitivity to nutritional starvation, accelerated leaf senescence, and increased hydrogen peroxide (HO) levels, resembling the phenotypes of atg mutants defective in autophagy. Conversely, macp2 knockouts exhibited diminished starvation-induced HO accumulation and attenuated autophagosome formation and fully suppressed the starvation-hypersensitive phenotypes of the atg5-1 mutant. In particular, MACP2 was degraded through the autophagy machinery during prolonged starvation, suggesting a feedback regulatory mechanism for maintaining MACP2 homeostasis. Our findings suggest that MACP2 acts as a key regulator in autophagy induction by controlling influx of extracellular HO in Arabidopsis.
在植物中,自噬是一种保守的循环利用系统,通过将细胞成分靶向液泡进行大量降解,对植物发育和应激反应至关重要。我们之前的研究表明,自噬通过调节NADPH氧化酶介导的活性氧(ROS)稳态来促进拟南芥的应激反应;然而,细胞外ROS与自噬之间的分子联系仍然未知。我们以自噬核心成分ATG8e为诱饵,进行了酵母双杂交筛选,以鉴定参与自噬的成分。我们通过其与ATG8相互作用的基序鉴定出膜攻击复合物/穿孔素样2(MACP2)是ATG8e的相互作用蛋白,并通过免疫共沉淀和双分子荧光互补试验证实了这种相互作用。过表达MACP2的株系对营养饥饿表现出增强的敏感性、加速的叶片衰老以及过氧化氢(H₂O₂)水平升高,类似于自噬缺陷的atg突变体的表型。相反,macp2基因敲除植株饥饿诱导的H₂O₂积累减少,自噬体形成减弱,并完全抑制了atg5 - 1突变体的饥饿超敏表型。特别是,在长期饥饿期间,MACP2通过自噬机制被降解,这表明存在一种维持MACP2稳态的反馈调节机制。我们的研究结果表明,MACP2通过控制拟南芥细胞外H₂O₂的流入,在自噬诱导中起关键调节作用。