Petros Lukas Degu, Abdisa Temesgen Erena, Etefa Dinka Tilahun, Menbiko Dawit Kechine, Gizaw Ademe Kebede, Simma Eba Alemayehu, Yewhalaw Delenasaw, Deressa Chernet Tuge
Department of Mathematics, Jimma University, Jimma, Ethiopia.
Department of Biology, Jimma University, Jimma, Ethiopia.
PLoS One. 2025 Aug 20;20(8):e0330158. doi: 10.1371/journal.pone.0330158. eCollection 2025.
Malaria remains a significant global health challenge, particularly in sub-Saharan Africa, despite advances in control measures. In 2023, there were an estimated 263 million malaria cases and 597,000 deaths, with most occurring in Africa. This study presents a temperature-dependent, two-class age-structured malaria model using partial differential equations and optimal control strategies to assess their impact on malaria transmission. We analyze the existence and stability of equilibria, determined by the basic reproduction number R0, and demonstrate global stability through Lyapunov functionals. Numerical simulations show the effects of temperature variations and optimal controls on transmission dynamics, providing actionable insights for malaria management. Empirical validation of the model was performed using six years of infection prevalence data from the Jimma zone, revealing an [Formula: see text] of 0.68 and an adjusted [Formula: see text] of 0.63, indicating a good fit to observed data. Furthermore, comparison with an existing age-structured malaria model from the literature showed superior predictive accuracy, with our model demonstrating better performance in capturing temperature-dependent malaria trends. These results underscore the robustness and practical relevance of the model, offering improved prediction and control strategies under varying environmental conditions.
尽管疟疾控制措施取得了进展,但疟疾仍然是一项重大的全球卫生挑战,在撒哈拉以南非洲地区尤为如此。2023年,估计有2.63亿疟疾病例和59.7万人死亡,其中大多数发生在非洲。本研究提出了一个基于偏微分方程的温度依赖型两类年龄结构疟疾模型,并采用最优控制策略来评估其对疟疾传播的影响。我们分析了由基本再生数R0决定的平衡点的存在性和稳定性,并通过李雅普诺夫泛函证明了全局稳定性。数值模拟展示了温度变化和最优控制对传播动态的影响,为疟疾管理提供了可操作的见解。利用来自吉马地区的六年感染率数据对该模型进行了实证验证,得出拟合优度R²为0.68,调整后的R²为0.63,表明该模型与观测数据拟合良好。此外,与文献中现有的年龄结构疟疾模型进行比较,结果显示我们的模型具有更高的预测准确性,在捕捉温度依赖型疟疾趋势方面表现更优。这些结果强调了该模型的稳健性和实际相关性,为不同环境条件下的疟疾预测和控制策略提供了改进。