Zhao Yuanyuan, Luo Yiqian, Chai Yi, Lam Yintung, Gong Yongqing, Chen Ke, Lu Gang, Xia Gang, Chang Yun, Yang Menghao, Xu Yang, Xin John Haozhong
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China.
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
Nano Lett. 2025 May 28;25(21):8488-8494. doi: 10.1021/acs.nanolett.5c00651. Epub 2025 May 16.
Efficient binding of cell membranes onto nanomaterials is essential for biomedical applications such as diagnostics and cellular engineering. We find that fine control over oligomer orientation led to enhanced electrostatic interactions with the cell membrane and improved cell membrane capture. Specifically, we designed polycation oligomers incorporating positively charged imidazole heads and alkyl tails synthesized through the reversible addition-fragmentation chain transfer (RAFT) reaction. These oligomers spontaneously self-assemble through head-to-head π-π interactions, and their spatial arrangement markedly accelerates the interaction with negatively charged cell membranes. Experimental results indicate that these oriented oligomers produce a large decrease in the time required to kill bacteria compared to unmodified nanostructures (3 min versus 100 min). This is attributed to locally concentrated electrostatic attraction, which enhances the attraction between nanostructures and negatively charged cell surfaces. Our findings suggest that molecular orientation control could be a promising approach to enhancing interactions between biomaterials and live cells.
细胞膜与纳米材料的高效结合对于诊断和细胞工程等生物医学应用至关重要。我们发现,对低聚物取向的精细控制可增强与细胞膜的静电相互作用并改善细胞膜捕获。具体而言,我们设计了通过可逆加成-断裂链转移(RAFT)反应合成的、包含带正电荷的咪唑头和烷基尾的聚阳离子低聚物。这些低聚物通过头对头的π-π相互作用自发自组装,其空间排列显著加速了与带负电荷的细胞膜的相互作用。实验结果表明,与未修饰的纳米结构相比,这些取向低聚物使杀死细菌所需的时间大幅减少(3分钟对100分钟)。这归因于局部集中的静电吸引力,它增强了纳米结构与带负电荷的细胞表面之间的吸引力。我们的研究结果表明,分子取向控制可能是增强生物材料与活细胞之间相互作用的一种有前途的方法。