Suppr超能文献

特殊人群中丧偶膀胱癌患者的肿瘤学结局及生存预测因素

Oncological outcome and survival predictors of widowed patients with bladder cancer in special populations.

作者信息

Sun Fu-Zhen, Liu Yi-Xuan, Xu Qing-Le, Guo Liu-Xiong, Zhang Pan-Ying, Liu Liang

机构信息

Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China.

Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, Hebei, PR China.

出版信息

Sci Rep. 2025 Aug 20;15(1):30638. doi: 10.1038/s41598-025-13033-z.

Abstract

This study aimed to identify prognostic indicators and develop a nomogram to predict the overall survival (OS) of widowed bladder cancer (WBCa) patients. WBCa patients between 2004 and 2015 were identified using the Surveillance, Epidemiology, and End Results (SEER) database. The patients were randomly divided into the training and validation sets at a 7:3 ratio. Independent prognostic factors were determined using univariate and multivariate Cox analyses. We constructed a nomogram to predict 3- and 5-year for WBCa patients based on the results of multivariate Cox regression analysis. Consistency index (C-index), receiving operating characteristic (ROC), and calibration curve were used to assess the predictive accuracy of the nomogram. Gender, age at diagnosis, ethnicity, histologic type, histologic grade, tumor‑node metastasis (TNM) stage, and surgery were identified as independent predictors of OS. The C-index value of the nomogram for predicting OS was 0.704 and 0.701 in the training and validation cohorts, respectively. The ROC curves and calibration plots indicated that the model was relatively accurate. Independent prognostic factors for WBCa patients were identified, and a nomogram was constructed to predict the 3- and 5-year OS. The model enables clinicians to determine cancer patients' survival prognosis and formulate personalized treatment plans.

摘要

本研究旨在确定预后指标并开发一种列线图,以预测丧偶膀胱癌(WBCa)患者的总生存期(OS)。利用监测、流行病学和最终结果(SEER)数据库识别2004年至2015年间的WBCa患者。患者按7:3的比例随机分为训练集和验证集。使用单因素和多因素Cox分析确定独立预后因素。基于多因素Cox回归分析结果,我们构建了一个列线图来预测WBCa患者的3年和5年生存期。一致性指数(C-index)、受试者操作特征曲线(ROC)和校准曲线用于评估列线图的预测准确性。性别、诊断时年龄、种族、组织学类型、组织学分级、肿瘤-淋巴结转移(TNM)分期和手术被确定为OS的独立预测因素。在训练队列和验证队列中,预测OS的列线图的C-index值分别为0.704和0.701。ROC曲线和校准图表明该模型相对准确。确定了WBCa患者的独立预后因素,并构建了一个列线图来预测3年和5年OS。该模型使临床医生能够确定癌症患者的生存预后并制定个性化治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验