Suppr超能文献

建立和验证一个用于预测膀胱癌伴肺转移患者总生存期的模型:一项基于人群的研究。

Development and validation a model for predicting overall survival of bladder cancer with lung metastasis: a population-based study.

机构信息

Department of Urology, Baoding No.1 Central Hospital, No.320 Changcheng North Street, Lianchi District, Baoding, 071000, Hebei, China.

Prostate & Andrology Key Laboratory of Baoding, Baoding, China.

出版信息

Eur J Med Res. 2023 Aug 10;28(1):279. doi: 10.1186/s40001-023-01261-w.

Abstract

BACKGROUND

Although the number of patients with bladder cancer and lung metastasis is increasing there is no accurate model for predicting survival in these patients.

METHODS

Patients enrolled in the Surveillance, Epidemiology, and End Results database between 2010 and 2015 were selected for the study. Univariate and multivariate Cox regression were used to determine independent prognostic factors, followed by development of a nomogram based on the multivariate Cox regression models. The consistency index, receiver operating characteristic curve, and calibration curve were used to validate the prognostic nomogram.

RESULTS

506 eligible bladder cancer patients with lung metastasis were enrolled in the study and then divided randomly into training and validation sets (n = 356 vs. n = 150). Multivariate Cox regression analysis indicated that age at diagnosis, primary site, histological type, surgery of the primary site, chemotherapy, bone metastasis, and liver metastasis were prognostic factors for overall survival (OS) in patients with lung metastasis in the training set. The C-index of the nomogram OS was 0.699 and 0.747 in the training and validation sets, respectively. ROC curve estimation of the nomogram in the training and validation sets showed acceptable accuracy for classifying 1-year survival, with an area under the curve (AUC) of 0.766 and 0.717, respectively. More importantly, the calibration plot showed the nomogram had favorable predictive accuracy in both the training and validation sets.

CONCLUSIONS

The prognostic nomogram created in our study provides an individualized diagnosis, remedy, and risk evaluation for survival in patients with bladder cancer and lung metastasis. The nomogram would therefore enable clinicians to make more precise treatment decisions for patients with bladder cancer and lung metastasis.

摘要

背景

尽管膀胱癌和肺转移患者的数量正在增加,但目前尚无准确的模型来预测这些患者的生存情况。

方法

本研究纳入了 2010 年至 2015 年期间在监测、流行病学和最终结果数据库中登记的患者。采用单因素和多因素 Cox 回归分析确定独立的预后因素,然后基于多因素 Cox 回归模型建立列线图。一致性指数、受试者工作特征曲线和校准曲线用于验证预后列线图。

结果

本研究纳入了 506 例符合条件的膀胱癌伴肺转移患者,并将其随机分为训练集和验证集(n=356 与 n=150)。多因素 Cox 回归分析表明,诊断时年龄、原发部位、组织学类型、原发部位手术、化疗、骨转移和肝转移是训练集中肺转移患者总生存(OS)的预后因素。列线图 OS 的 C 指数在训练集和验证集中分别为 0.699 和 0.747。在训练集和验证集中,通过 ROC 曲线评估列线图的准确性,其 1 年生存率的曲线下面积(AUC)分别为 0.766 和 0.717。更重要的是,校准图显示该列线图在训练集和验证集中均具有良好的预测准确性。

结论

本研究构建的预后列线图为膀胱癌伴肺转移患者的生存提供了个体化诊断、治疗和风险评估,从而使临床医生能够为膀胱癌伴肺转移患者做出更精确的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7972/10413495/390d81a719b6/40001_2023_1261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验