Alsulami Badr T
Civil Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, Makkah, 24382, Saudi Arabia.
Sci Rep. 2025 Aug 20;15(1):30662. doi: 10.1038/s41598-025-16509-0.
Safety in the construction sector is a critical concern due to the high frequency of accidents and their impact on worker health, project timelines, and productivity. To the best of our knowledge, no prior study in the Kingdom of Saudi Arabia (KSA) has applied quantitative time series forecasting to construction accident data. This study analyzes over a decade of monthly accident records (January 2011-September 2022) from the General Organization for Social Insurance (GOSI) using three univariate forecasting models: Seasonal AutoRegressive Integrated Moving Average (SARIMA), Holt-Winters exponential smoothing, and Simple Exponential Smoothing (SES). The analysis identifies recurring seasonal patterns, long-term trends, and quantifies the impact of the COVID-19 lockdown on accident rates. SARIMA (1,1,1) (1,1,1,12) achieved the best performance, with a Mean Absolute Error of 74.75 and Root Mean Squared Error of 103.77, effectively capturing both seasonal cycles and trend behavior. By integrating historical pattern analysis with predictive modeling, the study provides a data-driven basis for proactive safety planning and accident prevention in the Saudi construction industry.
由于事故频发及其对工人健康、项目工期和生产力的影响,建筑行业的安全是一个至关重要的问题。据我们所知,沙特阿拉伯王国(KSA)此前没有研究将定量时间序列预测应用于建筑事故数据。本研究使用三种单变量预测模型:季节性自回归积分移动平均(SARIMA)、霍尔特-温特斯指数平滑法和简单指数平滑法(SES),分析了社会保险总组织(GOSI)十多年的月度事故记录(2011年1月至2022年9月)。该分析确定了反复出现的季节性模式、长期趋势,并量化了新冠疫情封锁对事故率的影响。SARIMA(1,1,1)(1,1,1,12)表现最佳,平均绝对误差为74.75,均方根误差为103.77,有效捕捉了季节性周期和趋势行为。通过将历史模式分析与预测建模相结合,该研究为沙特建筑行业的主动安全规划和事故预防提供了数据驱动的基础。