Shi Zhujun, Cheng Risheng, Wei Guohua, Hickman Steven A, Shin Min Chul, Topalian Peter, Wang Lei, Coso Dusan, Wang Youmin, Wang Qingjun, Le Brian, Lee Lizzy, Lopez Daniel, Wu Yuhang, Braxton Sean, Koshelev Alexander, Parsons Maxwell F, Agarwal Rahul, Silverstein Barry, Wang Yun, Calafiore Giuseppe
Reality Labs Research, Meta Platforms, Inc., Redmond, WA, USA.
Nature. 2025 Aug;644(8077):652-659. doi: 10.1038/s41586-025-09107-7. Epub 2025 Aug 20.
Laser-based displays are highly sought after for their superior brightness and colour performance, especially in advanced applications such as augmented reality (AR). However, their broader use has been hindered by bulky projector designs and complex optical module assemblies. Here we introduce a laser display architecture enabled by large-scale visible photonic integrated circuits (PICs) to address these challenges. Unlike previous projector-style laser displays, this architecture features an ultra-thin, flat-panel form factor, replacing bulky free-space illumination modules with a single, high-performance photonic chip. Centimetre-scale PIC devices, which integrate thousands of distinct optical components on-chip, are carefully tailored to achieve high display uniformity, contrast and efficiency. We demonstrate a 2-mm-thick flat-panel laser display combining the PIC with a liquid-crystal-on-silicon (LCoS) panel, achieving 211% of the colour gamut and more than 80% volume reduction compared with traditional LCoS displays. We further showcase its application in a see-through AR system. Our work represents an advancement in the integration of nanophotonics with display technologies, enabling a range of new display concepts, from high-performance immersive displays to slim-panel 3D holography.
基于激光的显示器因其卓越的亮度和色彩表现而备受青睐,尤其是在诸如增强现实(AR)等先进应用中。然而,其更广泛的应用受到了笨重的投影仪设计和复杂的光学模块组件的阻碍。在此,我们引入一种由大规模可见光子集成电路(PIC)实现的激光显示架构,以应对这些挑战。与以往的投影仪式激光显示器不同,这种架构具有超薄的平板外形,用单个高性能光子芯片取代了笨重的自由空间照明模块。厘米级的PIC器件在芯片上集成了数千个不同的光学元件,经过精心定制以实现高显示均匀性、对比度和效率。我们展示了一种将PIC与硅基液晶(LCoS)面板相结合的2毫米厚平板激光显示器,与传统LCoS显示器相比,实现了211%的色域覆盖率和超过80%的体积缩减。我们还展示了其在透视式AR系统中的应用。我们的工作代表了纳米光子学与显示技术集成方面的一项进展,开启了一系列新的显示概念,从高性能沉浸式显示器到超薄面板3D全息术。