Suppr超能文献

通过静电相互作用固定化酶-聚合物杂化物和纳米酶:迈向具有可控纳米结构的多催化微反应器。

Immobilization of Enzyme-Polymer Hybrids and Nanozymes Through Electrostatic Interactions: Toward Multicatalytic Microreactors with Controlled Nanoarchitecture.

作者信息

Ontoria Aitor, Alonso-Sampedro Irene, Yan Yixuan, Latif Ayşe, Spencer Ben F, Larrañaga Aitor, Beloqui Ana, Tapeinos Christos

机构信息

POLYMAT and Department of Applied Chemistry University of the Basque Country (UPV/EHU) Donostia-San Sebastián 20018 Spain.

Department of Mining-Metallurgy Engineering and Materials Science POLYMAT Bilbao School of Engineering University of the Basque Country (UPV/EHU) Plaza Torres Quevedo 1 Bilbao 48013 Spain.

出版信息

Small Sci. 2025 Jun 10;5(8):2500167. doi: 10.1002/smsc.202500167. eCollection 2025 Aug.

Abstract

The optimal allocation of catalysts and their precise compartmentalization are vital to ensure efficient cascade reactions. The layer-by-layer approach offers the possibility of assembling various building blocks onto templates of different sizes and shapes, thus representing a powerful tool for fabricating multicatalytic reactors with controlled nanoarchitecture. However, this process usually relies on electrostatic interactions between building blocks, which means a limitation when working with natural enzymes. Accordingly, both the loading capacity and control over membrane architecture are compromised by the inherent surface charge of the enzymes. Here, this study introduces a modular strategy to assemble engineered enzyme-polymer hybrids and inorganic nanozymes onto colloidal templates, giving rise to multicatalytic reactors. The surface charge of the engineered enzyme-polymer hybrids can be finely tuned, allowing their à-la-carte assembly into multilayer membranes. Following this approach, the distance between catalytic units and their arrangement on colloidal templates at the nano- and micrometer scale can be precisely controlled, resulting in optimized configurations with enhanced cascade efficiency. The synthesized multicatalytic reactors can reduce the metabolic activity of human pancreatic stellate cells, confirming their functional activity in biological microenvironments and highlighting their potential for biomedical applications.

摘要

催化剂的优化配置及其精确的区室化对于确保高效级联反应至关重要。逐层组装方法提供了将各种构建块组装到不同尺寸和形状模板上的可能性,因此是制造具有可控纳米结构的多催化反应器的有力工具。然而,这个过程通常依赖于构建块之间的静电相互作用,这意味着在处理天然酶时存在局限性。因此,酶的固有表面电荷会影响负载能力和对膜结构的控制。在此,本研究引入了一种模块化策略,将工程化酶 - 聚合物杂化物和无机纳米酶组装到胶体模板上,从而产生多催化反应器。工程化酶 - 聚合物杂化物的表面电荷可以精细调节,使其能够按需组装成多层膜。按照这种方法,可以精确控制催化单元之间的距离及其在纳米和微米尺度上在胶体模板上的排列,从而得到具有增强级联效率的优化配置。合成的多催化反应器可以降低人胰腺星状细胞的代谢活性,证实了它们在生物微环境中的功能活性,并突出了它们在生物医学应用中的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验