A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany.
Faculty of Biology, Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
Nat Commun. 2022 Jul 8;13(1):3968. doi: 10.1038/s41467-022-31632-6.
The fundamental life-defining processes in living cells, such as replication, division, adaptation, and tissue formation, occur via intertwined metabolic reaction networks that process signals for downstream effects with high precision in a confined, crowded environment. Hence, it is crucial to understand and reenact some of these functions in wholly synthetic cell-like entities (protocells) to envision designing soft materials with life-like traits. Herein, we report on all-DNA protocells composed of a liquid DNA interior and a hydrogel-like shell, harboring a catalytically active DNAzyme, that converts DNA signals into functional metabolites that lead to downstream adaptation processes via site-selective strand displacement reactions. The downstream processes include intra-protocellular phenotype-like changes, prototissue formation via multivalent interactions, and chemical messenger communication between active sender and dormant receiver cell populations for sorted heteroprototissue formation. The approach integrates several tools of DNA-nanoscience in a synchronized way to mimic life-like behavior in artificial systems for future interactive materials.
活细胞中的基本生命定义过程,如复制、分裂、适应和组织形成,都是通过相互交织的代谢反应网络进行的,这些网络在受限、拥挤的环境中以高精度处理信号,以产生下游效应。因此,理解和再现这些功能中的一些对于设计具有类生命特征的软材料至关重要。在这里,我们报告了由液态 DNA 内部和水凝胶状外壳组成的全 DNA 原细胞,其中包含一种具有催化活性的 DNA 酶,它将 DNA 信号转化为功能性代谢物,通过位点选择性链置换反应导致下游适应过程。下游过程包括细胞内表型样变化、通过多价相互作用形成原组织,以及活性发送器和休眠接收器细胞群体之间的化学信使通讯,用于分类杂种原组织的形成。该方法以同步的方式整合了几种 DNA 纳米科学工具,以在人工系统中模拟类似生命的行为,用于未来的交互式材料。