Suppr超能文献

基于机器学习的T2加权磁共振成像放射组学在多囊卵巢综合征诊断中的预测价值

Predictive value of machine learning-based T2-weighted MRI radiomics in the diagnosis of polycystic ovary syndrome.

作者信息

Rona Gunay, Fistikcioglu Neriman, Serel Tekin Ahmet, Arifoglu Meral, Eser Mehmet Bilgin, Ozcelik Serhat, Aydin Kadriye

机构信息

Department of Radiology, University of Health Sciences, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkiye.

Department of Urology, Suleyman Demirel University Faculty of Medicine, Isparta, Turkiye.

出版信息

North Clin Istanb. 2025 Jan 30;12(1):69-75. doi: 10.14744/nci.2024.34033. eCollection 2025.

Abstract

OBJECTIVE

This study aims to explore the predictive performance of machine learning-based radiomic features extracted from T2-weighted magnetic resonance imaging (MRI) in differentiating between women with polycystic ovary syndrome (PCOS) and healthy counterparts.

METHODS

The study included patients diagnosed with PCOS who had undergone pelvic MRI in the endocrine department between 2014 and 2022, along with an age-matched control group. The ovaries were manually segmented from T2-weighted images using the 3D Slicer software. Both first- and second-order features, including wavelet filters, were extracted from the images. Utilizing the Python 2.3 programming language and the Pycaret library, various machine learning algorithms were employed to identify highly correlated features. The optimal model was selected from the 15 algorithms assessed.

RESULTS

The study involved a total of 202 ovaries from 101 patients with PCOS (mean age 23±4 years) and 78 ovaries from the control group comprising 40 individuals (mean age 24±5 years). In the training set, the machine learning models displayed accuracy and area under the curve (AUC) values ranging from 72% to 83% and 0.50 to 0.81%, respectively. Notably, the Light Gradient Boosting Machine (LightGBM) model emerged as the most effective model among the various machine learning algorithms, exhibiting an AUC of 0.81 and an accuracy of 83%. When evaluated on the test set, the AUC, accuracy, recall, precision and F1 values of the LightGBM model were 0.80, 82%, 91%, 86%, 88%, respectively.

CONCLUSION

Machine learning-based T2-weighted MRI radiomics seems viable in differentiating between individuals with and without PCOS.

摘要

目的

本研究旨在探讨从T2加权磁共振成像(MRI)中提取的基于机器学习的放射组学特征在区分多囊卵巢综合征(PCOS)女性和健康对照者方面的预测性能。

方法

该研究纳入了2014年至2022年间在内分泌科接受盆腔MRI检查的PCOS确诊患者,以及年龄匹配的对照组。使用3D Slicer软件从T2加权图像中手动分割出卵巢。从图像中提取包括小波滤波器在内的一阶和二阶特征。利用Python 2.3编程语言和Pycaret库,采用各种机器学习算法来识别高度相关的特征。从评估的15种算法中选择最优模型。

结果

该研究共纳入了101例PCOS患者的202个卵巢(平均年龄23±4岁)和40名对照组个体的78个卵巢(平均年龄24±5岁)。在训练集中,机器学习模型的准确率和曲线下面积(AUC)值分别在72%至83%和0.50至0.81%之间。值得注意的是,轻梯度提升机(LightGBM)模型在各种机器学习算法中表现为最有效的模型,其AUC为0.81,准确率为83%。在测试集上评估时,LightGBM模型的AUC、准确率、召回率、精确率和F1值分别为0.80、82%、91%、86%、88%。

结论

基于机器学习的T2加权MRI放射组学在区分有无PCOS个体方面似乎是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c53f/12364468/efabb606d2ec/NCI-12-069-g001.jpg

相似文献

1
Predictive value of machine learning-based T2-weighted MRI radiomics in the diagnosis of polycystic ovary syndrome.
North Clin Istanb. 2025 Jan 30;12(1):69-75. doi: 10.14744/nci.2024.34033. eCollection 2025.
2
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.
Front Oncol. 2025 Jun 19;15:1599882. doi: 10.3389/fonc.2025.1599882. eCollection 2025.
3
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.
Acad Radiol. 2025 Feb;32(2):907-915. doi: 10.1016/j.acra.2024.09.049. Epub 2024 Oct 5.
7
Assessment of prostate cancer aggressiveness through the combined analysis of prostate MRI and 2.5D deep learning models.
Front Oncol. 2025 Jun 30;15:1539537. doi: 10.3389/fonc.2025.1539537. eCollection 2025.

本文引用的文献

2
The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review.
J Hum Reprod Sci. 2020 Oct-Dec;13(4):261-271. doi: 10.4103/jhrs.JHRS_95_18. Epub 2020 Dec 28.
3
Radiomics: from qualitative to quantitative imaging.
Br J Radiol. 2020 Apr;93(1108):20190948. doi: 10.1259/bjr.20190948. Epub 2020 Feb 26.
4
Polycystic ovary syndrome: Pelvic MRI as alternative to pelvic ultrasound for the diagnosis in overweight and obese adolescent girls.
Int J Pediatr Adolesc Med. 2017 Dec;4(4):147-152. doi: 10.1016/j.ijpam.2017.09.002. Epub 2017 Dec 15.
5
Polycystic Ovary Syndrome.
Obstet Gynecol. 2018 Aug;132(2):321-336. doi: 10.1097/AOG.0000000000002698.
7
Radiomics: the bridge between medical imaging and personalized medicine.
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4.
8
Polycystic Ovary Syndrome in Adolescents: Which MR Imaging-based Diagnostic Criteria?
Radiology. 2017 Dec;285(3):961-970. doi: 10.1148/radiol.2017161513. Epub 2017 Jul 25.
10
Delayed Diagnosis and a Lack of Information Associated With Dissatisfaction in Women With Polycystic Ovary Syndrome.
J Clin Endocrinol Metab. 2017 Feb 1;102(2):604-612. doi: 10.1210/jc.2016-2963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验