Suppr超能文献

温度对嗜热固体废物堆肥中细菌物种多样性的影响。

Effect of temperature on bacterial species diversity in thermophilic solid-waste composting.

作者信息

Strom P F

出版信息

Appl Environ Microbiol. 1985 Oct;50(4):899-905. doi: 10.1128/aem.50.4.899-905.1985.

Abstract

Continuously thermophilic composting was examined with a 4.5-liter reactor placed in an incubator maintained at representative temperatures. Feed was a mixture of dried table scraps and shredded newspaper wetted to 55% moisture. One run at 49 degrees C (run A) employed a 1:4 feed-to-compost ratio, while the other runs used a 10:1 ratio and were incubated at 50, 55, 60, or 65 degrees C. Due to self-heating, internal temperatures of the composting mass were 0 to 7 degrees C hotter than the incubator. Two full-scale composting plants (at Altoona, Pa., and Leicester, England) were also examined. Plate counts per gram (dry weight) on Trypticase soy broth (BBL Microbiology Systems) with 2% agar ranged from 0.7 X 10(9) to 5.3 X 10(9) for laboratory composting and 0.02 X 10(9) to 7.4 X 10(9) for field composting. Fifteen taxa were isolated, including 10 of genus Bacillus, which dominated all samples except that from run A. Species diversity decreased markedly in laboratory composting at 60 degrees C and above, but was similar for the three runs incubated at 49, 50, and 55 degrees C. The maximum desirable composting temperature based on species diversity is thus 60 degrees C, the same as that previously recommended based on measures of the rate of decomposition.

摘要

在一个放置于保持代表性温度的培养箱中的4.5升反应器中,对连续高温堆肥进行了研究。进料是干燥的餐桌残渣和切碎的报纸的混合物,湿度调节至55%。一次在49摄氏度下的运行(运行A)采用1:4的进料与堆肥比例,而其他运行采用10:1的比例,并在50、55、60或65摄氏度下进行培养。由于自身发热,堆肥物料的内部温度比培养箱高0至7摄氏度。还对两个全尺寸堆肥厂(宾夕法尼亚州阿尔图纳和英国莱斯特的)进行了检查。在含有2%琼脂的胰蛋白酶大豆肉汤(BBL微生物系统)上,每克(干重)的平板计数在实验室堆肥中为0.7×10⁹至5.3×10⁹,在现场堆肥中为0.02×10⁹至7.4×10⁹。分离出了15个分类单元,其中包括10个芽孢杆菌属,除了运行A的样本外,这些芽孢杆菌属在所有样本中占主导地位。在60摄氏度及以上的实验室堆肥中,物种多样性显著下降,但在49、50和55摄氏度下培养的三次运行中,物种多样性相似。因此,基于物种多样性的最适宜堆肥温度为60摄氏度,这与之前根据分解速率测量结果推荐的温度相同。

相似文献

1
Effect of temperature on bacterial species diversity in thermophilic solid-waste composting.
Appl Environ Microbiol. 1985 Oct;50(4):899-905. doi: 10.1128/aem.50.4.899-905.1985.
2
Identification of thermophilic bacteria in solid-waste composting.
Appl Environ Microbiol. 1985 Oct;50(4):906-13. doi: 10.1128/aem.50.4.906-913.1985.
3
Microbiological aspects of biowaste during composting in a monitored compost bin.
J Appl Microbiol. 2003;94(1):127-37. doi: 10.1046/j.1365-2672.2003.01800.x.
4
Effects of continuous thermophilic composting (CTC) on bacterial community in the active composting process.
Microb Ecol. 2011 Oct;62(3):599-608. doi: 10.1007/s00248-011-9882-z. Epub 2011 May 25.
5
The fate of the recombinant DNA in corn during composting.
J Environ Sci Health B. 2005;40(3):463-73. doi: 10.1081/PFC-200047595.
7
Microbial activity during composting of anthracene-contaminated soil.
Chemosphere. 2003 Sep;52(9):1505-13. doi: 10.1016/S0045-6535(03)00489-2.
8
Inactivation of Botrytis cinerea during thermophilic composting of greenhouse tomato plant residues.
Appl Biochem Biotechnol. 2006 Apr;133(1):59-75. doi: 10.1385/abab:133:1:59.

引用本文的文献

3
Combined forest and soil management after a catastrophic event.
J Mt Sci. 2020;17(10):2459-2484. doi: 10.1007/s11629-019-5890-0. Epub 2020 Oct 9.
5
Short-duration hydrothermal fermentation of food waste: preparation of soil conditioner for amending organic-matter-impoverished arable soils.
Environ Sci Pollut Res Int. 2017 Sep;24(26):21283-21297. doi: 10.1007/s11356-017-9514-3. Epub 2017 Jul 25.
6
Bacterial community structure transformed after thermophilically composting human waste in Haiti.
PLoS One. 2017 Jun 1;12(6):e0177626. doi: 10.1371/journal.pone.0177626. eCollection 2017.
9
Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis.
Asian-Australas J Anim Sci. 2012 Jul;25(7):1045-54. doi: 10.5713/ajas.2011.11341.
10
Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting.
World J Microbiol Biotechnol. 2014 Jun;30(6):1737-46. doi: 10.1007/s11274-013-1593-9. Epub 2014 Jan 12.

本文引用的文献

1
Microbial Thermogenesis in the Decomposition of Plant Materials: Part II. Factors Involved.
J Bacteriol. 1941 Jun;41(6):699-724. doi: 10.1128/jb.41.6.699-724.1941.
2
Composting process control based on interaction between microbial heat output and temperature.
Appl Environ Microbiol. 1981 Jun;41(6):1321-30. doi: 10.1128/aem.41.6.1321-1330.1981.
5
Continuous thermophilic composting.
Appl Microbiol. 1962 Mar;10(2):108-22. doi: 10.1128/am.10.2.108-122.1962.
6
Heat output of thermophiles occurring on wool.
J Bacteriol. 1961 Feb;81(2):165-71. doi: 10.1128/jb.81.2.165-171.1961.
7
Biokinetic analyses of adaptation and succession: microbial activity in composting municipal sewage sludge.
Appl Environ Microbiol. 1984 May;47(5):933-41. doi: 10.1128/aem.47.5.933-941.1984.
8
Self-heating of hay and grain in Dewar flasks and the development of farmer's lung antigens.
J Gen Microbiol. 1965 Dec;41(3):389-407. doi: 10.1099/00221287-41-3-389.
9
Bacteriological and chemical studies in rice straw compost. 3. Effect of ammoniacal nitrogen.
Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1968;122(5):500-9.
10
Taxonomy and classification of the actinomycetes.
Soc Appl Bacteriol Symp Ser. 1973 Jan;2:11-112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验